Department	:	Physics
Class	:	I B.Sc. Physics
Title of the Course	:	Core Course –I: PROPERTIES OF MATTER AND ACOUSTICS
Semester	:	I
Course Code	:	PU231CC1
		Total Marks

Course Code	т	L T P Credits Inst. Hours		Total		Marks			
Course Coue	L	I	I	Creuits	1115t. 110u15	Hours	CIA	External	Total
PP2035	6	-	-	6	6	90	25	75	100

Learning Objectives

- 1. To Study of the properties of matter leads to information which is of practical value to the physicists.
- 2. To provide an information about the internal forces which act between the constituent parts of the substance.

On the s	uccessful completion of the course, student will be able to:	PSO addressed	Cognitive Level
1.	Relate elastic behavior in terms of three modulii of elasticity and working of torsion pendulum.	PSO 1	K1 (R) & K2 (U)
2.	Appreciate concept of bending of beams and analyze the expression, quantify and understand nature of materials.	PSO 2	K2 (U) & K3 (Ap)
	Explain the surface tension and viscosity of fluid and support the interesting phenomena associated with liquid surface, soap films provide an analogue solution to many engineering problems.	PSO 1	K2 (U) & K3 (Ap)
4.	Analyze simple harmonic motions mathematically and apply them. Understand the concept of resonance and use it to evaluate the frequency of vibration. Set up experiment to evaluate frequency of ac mains		K1 (R) & K3 (Ap)
5.	Understand the concept of acoustics, importance of constructing buildings with good acoustics. Also to apply their knowledge of ultrasonics in real life, especially in medical field and assimilate different methods of production of ultrasonic waves.		K2 (U) & K3 (Ap)

Unit	Section	Topics	Pedagogy	Assessment/		
		- • F	Lecture hours	Cogn itive		Evaluation
			nours	Level		2,
I	ELASTI			Level		
L	1	Hooke's law –	5	K1 (R)	Lecture	Evaluation
	1	stress-strain	5		using chalk	through:
		diagram –			and talk,	short test
		elastic			Discussion	short test
		constants			with	Class Test
		constants			Videos,	Class Test
					mind	Multiple
						choice
					mapping, Demonstrat	
						questions
	2	Poisson's ratio –		V2(A=)	ion	Ouiz
	2			K3 (Ap)	Lecture	Quiz
		relation between	4		using	Formersting
			4		videos,	Formative
		Poisson's ratio			Problem	assessment
					solving	C1 (
						Short
						Summary or
	3	work done in	5	K2 (U)	Demonstrat	Overview
	5	stretching and	5	$\mathbf{K}_{2}(0)$	ion, Peer	
		twisting a wire –			tutoring,	
		twisting couple on a			Problem	
		cylinder			solving,	
		c ymhder			Review	
	4		4			
	4	rigidity modulus by	4	K3 (Ap)	Demonstrat	
		static torsion-			ion, Peer	
		torsional pendulum			tutoring,	
		(with and without			Problem	
		masses)			solving,	
					Review	
II		NG OF BEAMS	1.			·
	1	Cantilever-	4	K2 (U)	Demonstratio	Evaluation
		expression for			n, Peer	through:
		Bending moment –			tutoring,	Short test
		expression for			Problem	Quiz
		depression at the			solving,	
		loaded end of the			Review	

	Modules
:6	Total contact hours: 90 (Including assignments and tests)

		cantilever			Discussion	Assignment
					with Video,	1 isoigiinient
					mind	Formative
					mapping	assessment
	2	oscillations of a	4	K3 (Ap)	Demonstrat	Class test
		cantilever – expression			ion, Peer	
		for time period –			tutoring,	Practical.
		experiment to find			Problem	T fuetieui.
		Young's modulus			solving,	
					Review,	
					Discussion	
					with PPT,	
					mind	
					mapping	
	3	non-uniform	5	K3 (Ap)	Demonstratio	
		bending-experiment			n, Peer	
		to determine Young's			tutoring,	
		modulus by Koenig's			Problem	
		method – uniform			solving,	
		bending			Review, mind	1
					mapping	
	4	expression for	5	K3 (Ap)	Demonstratio	
		elevation –			n, Peer	
		experiment to			tutoring,	
		determine Young's			Problem	
		modulus using			solving,	
		microscope			Review	
III	FLUID	DYNAMICS				
	1	Surface tension:	5	K3 (Ap)	Lecture	
		definition – molecular			using	Evaluation
		forces-excess			chalk and	through:
		pressure over curved			talk,	
		surface – application			Discussion	Class test
		to spherical and			with video,	
		cylindrical drops and			mind	Quiz
		bubbles			mapping	
	2	determination of	4	K2 (U)	Lecture	Multiple choice
		surface tension by			using	questions
		Jaegar's method–			videos,	
		variation of surface			Problem	Formative
		tension with			solving	assessment
		temperature			-	Practical
						i iuviivai

	3	Viscosity:definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube Poiseuille's formula –corrections – terminal velocity and Stoke's formula– variation of viscosity with temperature	5	K2 (U) K3 (Ap)	Lecture using videos, Demonstrat ion, Peer tutoring, Problem solving, Review. Demonstrat ion, Peer tutoring, Problem solving, Review	
IV	WAVES 1 2	AND OSCILLATIONSimpleHarmonicMotion(SHM) – differentialequation of SHM –graphicalrepresentationofSHM- composition oftwo SHM in a straightline and at right anglesLissajous's figures-free, damped, forcedvibrations –resonance andSharpness ofresonance.	6	K2 (U)	Lecture using chalk and talk, Discussion with PPT, mind mapping Lecture using videos, Problem solving	Evaluation through: Class test Quiz Short test Formative assessment II Practical
	3	Laws of transverse vibration in strings – sonometer – determination of AC frequency using sonometer	4	K2 (U)	Demonstrati on, Peer tutoring, Problem solving, Review	

	4	determination of frequency using Melde's string	4	K3 (Ap)	Demonstrati on, Peer tutoring,	
		apparatus			Problem solving, Review	
				DAGONICG.		
		TICS OF BUILDINGS			_	
	1	Intensity of sound – decibel – loudness of sound –reverberation – Sabine's	5	K1 (R)	Lecture using chalk and talk,	Evaluation through: Short test
		reverberation formula			Discussion with PPT, mind	Class test
	2	acoustic intensity – factors affecting the	4	K3 (Ap)	mapping Demonstrati on, Lecture	Quiz Assignment
		acoustics of buildings.			using videos, Problem	Formative assessment II
V	3	Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method		K2 (U)	solving Demonstrati on, Peer tutoring, Problem solving, Review, Lecture using videos.	
	4	magnetostriction effect –application of ultrasonic waves		K3 (Ap)	Demonstrati on, Peer tutoring, Problem solving, Review, Lecture using videos.	

Course Focussing on Employability/ Entrepreneurship/ Skill Development : **Employability** Activities (Em/ En/SD): **Model Making**

Course Focussing onCross Cutting Issues(Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues :-

Assignment : (Mention Topic and Type): Application of ultrasonics - LMS

Sample questions

Part A (1 mark)

Answer all the questions

- 1. The ratio of volume stress to the volume strain is known as _____ (K2-U, CO 1)
- a) Volume stain b) Young's modulus c) Bulk modulus d) none of the above
- 2. The ratio of change in any dimension to its original value is called _____(K1-R, CO 2)
 - a) stress b) stain c) poisson's ratio d) Rigidity modulus
- 3. The unit of co-efficient of viscosity is ______ (K1-R, CO 3)
- a) Nm b) N/sec c) Nm^2 d) Nsm^{-2}
- 4. The simple pendulum vibrates with a time period T given by _____ (K3-Ap, CO 4)

a)
$$T = 2\pi \frac{l}{g}$$
 (b) $T = 2\pi \frac{k}{g}$ (c) $T = \pi \frac{l}{g}$ (d) $T = \pi \frac{l}{2g}$

5. The persistence of sound in an enclosure due to multiple reflections of sound at the walls after the source has ceased to emit sound is known as _____. (K1-R, CO 5)

Part B (4 marks)

- 1. Define beam. Derive the expression for bending moment. (K2-U, CO 1)
- 2. Derive an expression for time period of cantilever oscillations. (K2- U, CO 2)
- 3. Explain streamline flow and turbulent flow.. (K1-R, CO 3)
- 4. Obtain the differential equation of S.H.M. (K2-U, CO 4)
- 5. Explain the production of ultrasonic waves using piezoelectric crystal method.(K2-U, CO 5)

Part C (9 marks)

- 1. Explain in detail different moduli of elasticity and Possion's ratio. (K2-U, CO1)
- 2. Explain the experimental method to determine the Youngs modulus of the beam using non uniform set up. (K2- U, CO 2)
- 3. Describe Jaegar's method of determining surface tension of liquids. (K2-U, CO 3)
- 4. Explain the transverse and longitudinal mode of the Melde string and hence determine the frequency of the fork. (K3- Ap, CO 4)
- 5. Discuss the factors affecting the architectural acoustics and their remedies.(K3-Ap, CO 5)

Dr. S. Sonia & Dr. P.Aji Udhaya Course Instructor

Head of the Department

Department	:	Physics
Class	:	I B.Sc Mathematics
Title of the Course	:	Generic Elective : Allied Physics for Mathematics-I
Semester	:	Ι
Course Code	:	PU231GE1

Comme Code	т	Т	D	Credita Inst Houng		Total	Marks		
Course Code	L	I	P	Creatts	Inst. Hours	Hours	CIA	External	Total
PU231GE1	4	-	-	3	4	60	25	75	100

Objectives

- To impart basic principles of Physics
- To incorporate concepts of Physics in day to day life

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	Acquire knowledge on elementary ideas of waves, properties of matter, electricity and magnetism, electronics	PSO - 1	K1 & K2
CO - 2	Analyze the concepts of ultrasonics, surface tension and study their applications in the medical field.	PSO - 4	К3
CO - 3	Interpret the real-life solution using concepts of electricity, magnetism, and electronics in Digital India.	PSO - 3	К2
CO - 4	Apply their depth knowledge of Physics in day today life.	PSO - 3	К3
CO - 5	Develop their knowledge to carry out the practical by applying these concepts of Physics	PSO - 5	КЗ

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
I	1.	Simple harmonic motion (SHM) – composition of two SHMs at right angles (periods in the ratio 1:1) – Lissajous figures – uses	3	K1(R)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	Evaluation through: short test Class Test
	2.	laws of transverse vibrations of strings – determination of AC frequency using sonometer (steel and brass	2	K1(R)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	Multiple choice questions Quiz
	3.	wires) ultrasound – production – piezoelectric method – application of ultrasonics: medical field – lithotripsy, ultrasonography – ultrasonoimaging	4	K2(U)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	Formative assessment Short Summary or Overview
	4.	ultrasonics in dentistry – physiotheraphy, opthalmology – advantages of noninvasive surgery – ultrasonics in green chemistry.	3	K3(Ap)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	
Π	5. 6.	Elasticity: elastic constants – bending of beam – theory of non- uniform bending – determination of Young's modulus by non- uniform bending energy stored in a	3	K1(R) K2(U)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping, Peer tutoring,	Evaluation through: short test Class Test Multiple choice questions Quiz

		stretched wire –			Lecture using	Formative
		torsion of a wire –			videos, Problem	ronnauve
		determination of				aggaggmant
					solving,	assessment
		rigidity modulus			Demonstration,	Chart Cours
		by torsional			PPT, Review	Short Summary
		pendulum				
		Viscosity:				or Overview
		streamline and				
		turbulent motion –				
		critical velocity	2		.	
	7.	coefficient of	3	K3(Ap)	Lecture using	
		viscosity –			Chalk and talk	
		Poiseuille's			,Introductory	
		formula –			session, Group	
		comparison of			Discussion,	
		viscosities –			Mind mapping,	
		burette method,				
		Surface tension:				
		definition				
	8	molecular theory –	3	K1(R)	Peer tutoring,	
		droplets			Lecture using	
		formation– shape,			videos, Problem	
		size and lifetime –			solving,	
		COVID			Demonstration,	
		transmission			PPT, Review	
		through droplets,				
		saliva – drop				
		weight method –				
		interfacial surface				
		tension.				
III	9	Joule-Kelvin effect	3	K1(R)	Lecture using	Evaluation
		– Joule-Thomson			Chalk and talk	
		porous plug			,Introductory	through: short
		experiment –			session, Group	Ŭ
		theory			Discussion,	test Class Test
		•			Mind mapping,	
		– temperature of			11 0/	Multiple choice
		inversion –				I I
		liquefaction of				questions Quiz
	10	Oxygen	3		De est 44	
	10	Linde's process of	3	K2(U)	Peer tutoring,	Formative
		liquefaction of air-			Lecture using	
		liquid Oxygen for			videos, Problem	assessment
		medical purpose-			solving,	
		importance of			Demonstration,	Short Summary
		cryocoolers –			PPT, Review	,
		thermodynamic				or Overview
		system		TTA / 1 \		
	11	thermodynamic	3	K3(Ap)	Lecture using	
		equilibrium – laws			Chalk and talk	

	12	of thermodynamics – heat engine – Carnot's cycle – efficiency entropy – change of entropy in reversible and irreversible process.	3	K1(R)	,Introductory session, Group Discussion, Mind mapping, Peer tutoring, Lecture using videos, Problem solving, Demonstration,	
IV	13	Potentiometer – principle – measurement of thermo emf using potentiometer – magnetic field due to a current carrying conductor	3	K1(R)	PPT, Review Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	Evaluation through: short test Class Test Multiple choice
	14	Biot-Savart's law – field along the axis of the coil carrying current – peak, average and RMS values of ac current and voltage	3	K1(R)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	questions Quiz Formative assessment Short Summary
	15	power factor and current values in an AC circuit – types of switches in household and factories	3	K2(U)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	or Overview
	16	Smart wifi switches- fuses and circuit breakers in houses	3	K2(U)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	
V	17	logic gates, OR, AND, NOT, NAND, NOR , EXOR logic gates – universal building blocks	3	K1(R)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	Evaluation through: short test Class Test Multiple choice
	18	BooleanalgebraDeMorgan'stheorem-verification-	3	K3(Ap)	Peer tutoring, Lecture using videos, Problem solving,	questions Quiz

	overview of			Demonstration, PPT, Review	Formative
19	Government initiatives:software technological parks under MeitY, NIELIT	3	K2(U)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	assessment Short Summary or Overview
20	Semiconductor laboratories under Dept. of Space – an introduction to Digital India	3	K2(U)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	

Course Focussing on Employability/ Entrepreneurship/ Skill Development : Skill Development

Activities (Em/ En/SD): Model making

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues : -

Assignment : Streamline and Turbulent motion -Demonstration

Seminar Topic: -

Sample questions (minimum one question from each unit)

Part A

1. The material used in magnetostriction method is _____.(K1-R, CO-1) a) Ferromagnetic b)dia magnetic c) paramagnetic d) None of the above 2. ______ is defined as the restoring force per unit area. (K3-Ap, CO-2) 3. A ----- is a device for measuring potential differences. (K2-U, CO-3) b) Potentiometer a) Meter Bridge c) Carey Foster Bridge. 4. The maximum value of alternating current in any direction is called ------ value of alternating current. (K3-Ap, CO-4) a) Peak b) Mean c) Maximum d) RMS 5. When NOT gate follows an AND gate, the combination is called as _____(K3- Ap,CO-5) a) NAND b) AND c) EX-OR d) NOR

Part B

- 1. Interpret the production of ultrasonic waves using piezoelectric crystal method. (K2-U, CO-1)
- 2. Derive the expression for the bending moment. (K3-Ap, CO-2)
- 3. Explain the change of entropy in reversible and irreversible process. (K2-U, CO-3)
- 4. How will you measure the thermo emf using potentiometer? Explain. (K3-Ap, CO-4)
- 5. Show that the NAND gate as universal building blocks. (K3- Ap,CO-5)

Part C

- 1. Describe the applications of ultrasonic waves. (K2-U, CO-1)
- 2. Determine the Rigidity modulus by Torsion pendulum by Dynamic torsion method. (K3-Ap , CO-2)
- 3. Obtain the efficiency of Carnot's cycle with suitable phase diagram. (K2-U, CO-3)
- 4. Define Biot-Savart's law and obtain an expression for field along the axis of the coil carrying current. (K3-Ap, CO-4)
- 5. Verify the De Morgan's theorem. (K3- Ap,CO-5)

Head of the Department

Course Instructor

		Teaching Plan
Department	:	Physics
Class	:	I B.Sc Physics
Title of the Course	:	Skill Enhancement Course- SEC I

Non Major Elective: Physics for Everyday Life

Semeste	er
Course	Code

: PU231SE1

: I

		тт		n	C l'	T A TT	Total	Marks		
	Course Code	L	.I.	P	Credits	Inst. Hours	Hours	CIA	External	Total
	PU231SE1	2	-	-	2	2	30	25	75	100

Objectives

- 1. To introduce fundamental physics concepts and their applications in everyday life.
- 2. To comprehend where all physics principles have been applied in everyday life and to appreciate the concepts with a greater understanding, as well as to learn about Indian scientists who have made significant contributions to Physics.

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	Understand the knowledge of basic scientific principles and fundamental concepts in motion of bodies.	PSO-1	K2
CO - 2	Understand the basic laws of physics in domestic appliances	PSO-1	K2
CO - 3	Recall the physics notions applied in various optical instruments	PSO-2	K2
CO - 4	Comprehend the utilization of solar energy in everyday life activities	PSO-3	K2
CO - 5	Know about the various physicists contribution towards science and technology	PSO-1	K1

Uni t	Modu le	Торіс	Teachi ng Hours	Cognitive level	Pedagogy	Assessment/Evaluat ion
Ι	MECH	ANICAL OBJEC	TS			
	1	Spring scales, bouncing balls	2	K2(U)	Demonstrat ion	Evaluation through:
	2	Roller coasters, bicycles	2	K2(U)	PPT, illustration, group discussion	Online quiz, short questions Descriptive answers MCQ, True/False,
	3	Rockets	1	K2(U)	PPT, Illustration	Short essays, Concept
	4	Space travel	1	K2(U)	PPT, Theoretical formulation	explanations, Formative assessment I
II	OPTIC	AL INSTRUMEN	TS AND	LASER	1	
	1	Vision corrective lenses, Polaroid glasses	2	K2(U)	PPT, Group discussion	Evaluation through: Online quiz, Short questions Descriptive
	2	UV protective glass – Polaroid camera	2	K2(U)	PPT, Group discussion	Descriptive answers Formative
	3	Colour photography	1	K2(U)	Concept Explanation, Theoretical formulation	assessment I
	4	Holography and Laser	1	K2(U)	Demonstration n, Group discussion	
III	PHYSI	CS OF HOME AI	PPLIAN	CES		
	1	Bulb – fan – hair drier	2	K2(U)	Lecture method, Concept Explanatio n, Peer group learning, PPT	Evaluation through: Online quiz, short questions Descriptive answers MCQ, True/False, Concept

Total Contact hours: 30 (Including lectures, assignments and tests)

	2 3	conditioners		conditioners		explanations, Formative assessment I/II	
IV	SOLAF	R ENERGY					
	1	Solar constant – General applications of solar energy	2	K2(U)	Lecture method, Peer group learning, PPT	Evaluation through: Online quiz, short questions Descriptive answers	
	2	Solar water heaters – Solar Photo – voltaic cells	2	K2(U)	Lecture method, group discussion, PPT	MCQ, True/False, Concept explanations, Short summary	
	3	General applications of solar cells.	2	K2(U)	Group discussion, PPT	Formative assessment II	
V	INDIA	N PHYSICIST AN	D THE	IR CONTRIBU	ΓIONS		
	1	C.V.Raman, HomiJehangirB habha,	2	K1(R)	Lecture method, Peer group learning, PPT	Evaluation through: Online quiz, short questions Descriptive	
	2	Vikram Sarabhai, Subrahmanyan Chandrasekhar,	2	K1(R)	Lecture method, Peer group learning, PPT	answers MCQ, True/False, Concept explanations, Formative	
	3	Venkatraman Ramakrishnan, Dr. APJ Abdul Kalam and their contribution to science and technology.	2	K1(R)	Lecture method, Peer group learning, PPT	assessment II	

Course Focussing on Employability/ Entrepreneurship / Skill Development: Skill Development

Activities (Em/ En/SD): Group Discussion

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment

Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues: -

Assignment: (Mention Topic and Type): General Applications of solar energy - descriptions through Google Classroom

Seminar Topic: (if applicable): -

Sample questions (minimum one question from each unit)

Part A (1 mark)

2. The abbreviation for LASER is _____

3. The hair dryer is also known as blow dryer. Say True / False.

4. Which one of the following material is used for collector tubes in solar water heater?a) Copperb) Ironc) Silverd) Aluminium

5. Who received the Nobel prize for physics for theoretical studies of the physical processes of importance to the structure and evolution of the stars?

a) Vikram Sarabhai b) Subrahmanyan Chadrasekhar

c) Sir C V Raman d) Homi Jehangir Bhabha

Part B (4 marks)

1. What is the physics principle behind the bouncing ball?

2. What are the characteristics of Laser light?

3. How the bulb glows light?

4. Explain the principle of solar cell.

5. How did Raman discovered the Raman effect?

Part C (8 marks)

- 1. Explain the working of Roller Coaster.
- 2. Discuss the various applications of Holography.
- 3. Discuss the working of a television.
- 4. Discuss the general applications of solar energy.
- 5. Discuss about Dr. A. P. J Abdul Kalam's contribution towards science and Technology.

Head of the Department

Course Instructor

Dr. C. Nirmala Louis

Dr. R. Krishna Priya

	Teaching Plan
Department	: Physics
Class	: II B.Sc. Physics
Title of the Course	: Core III: Heat and Thermodynamics
Semester	: III
Course Code	: PC2031

Comme Code	т	т	п	C l'A-	Ter et II errere	Total		Marks	
Course Code	L	I	Р	Credits	Inst. Hours	Hours	CIA	External	Total
PC2031	4	-	-	4	4	60	25	75	100

Objectives

- To understand the phenomena connected with various units of measurement of temperature, knowing the concept of specific heat capacities of matter and transmission of heat.
- To introduce the concept of lowering the temperature, liquefying gases and process of making heat to do mechanical work.

СО	Upon completion of this course, students will be able to:	PSO addressed	Cognitive level
CO-1	understand experimental methods to determine the transmission of heat.	PSO - 4	K2(U)
CO-2	analyze the work and heat interactions associated with a prescribed process path and to perform a analysis of a flow system.	PSO - 1	K4(An)
CO-3	understand the basic concepts of thermodynamics like system, properties, equilibrium, pressure, specific volume, temperature and the laws of thermodynamics.	PSO - 4	K2(U)
CO-4	evaluate entropy changes in a wide range of processes and determine the reversibility or irreversibility of a process from such calculations.	PSO - 3	K4(An)
CO-5	analyze Maxwell's thermo dynamical relations and their applications	PSO - 5	K5(E)

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι	Thermo	metry and Calorimetry				
	1.	Platinum resistance thermometer - Calendar and Griffith's bridge	2	K2(U)	Introductory session, Lecture using Chalk and talk, PPT.	Evaluation through short test, MCQ, True/False, Short essays.
	2.	Thermoelectric effect – Seebeck effect.	2	K1(R)	Discussion, Mind mapping,	Concept definitions, MCQ.
	3.	Thermoelectric thermometers- International temperature scale – Thermistor	2	K3(Ap)	Lecture using Chalk and talk, PPT.	Evaluation through short test, MCQ, True/False, Explain Principle.
	4.	Specific heat capacity of Solids – Regnault's method of mixtures (solid) – specific heat capacity of liquids – Callendar and Barnes method.	3	K4(An)	Lecture using videos, Problem solving, Demonstration.	Evaluation through Definition, Derive specific heat for different matters.
	5.	Specific heat capacity of gases – Cp and Cv – Meyer's relation – Cv by Joly's differential steam calorimeter method – Cp by Regnault's method.	3	K5(E)	Lecture using Chalk and talk , Problem Solving, PPT.	Evaluation through Definition, Derive specific heat for different matters.
II	Low Te	mperature Physics				
**	1.	Joule - Kelvin effect - Liquefaction of Air- Linde's Process.	2	K2(U)	Introductory session, Lecture using Chalk and talk , PPT.	Evaluation through short test, MCQ, True/False, Short essays.
	2.	Liquefaction of hydrogen - liquefaction of helium-Kammerling - Onne's method.	2	K4(An)	Lecture using videos, Problem solving, Demonstration.	Concept definitions, MCQ, Process explaination.
	3.	Helium I and II -	2	K2(U)	Discussion,	Evaluation

		Lambda point - production of low temperatures			Mind mapping,	through short test, MCQ, True/False, Differentiation between the types.
	4.	Adiabatic demagnetization – practical applications of low temperature - refrigerators and air- conditioning machines -	3	K3(Ap)	Lecture using Chalk and talk , Problem Solving, PPT.	Evaluation through short test, Long derivation.
	5.	Super fluidity - application of super fluidity.	3	K3(Ap)	Lecture using Chalk and talk, Problem Solving, PPT.	Evaluation through short test, Long essay.
III	Transm	ission of Heat		·		·
	1.	Conduction – coefficient of thermal conductivity – Rectilinear flow of heat along a bar.	2	K5(E)	Lecture using Chalk and talk , discussion, Derivation.	Evaluation through short test, Long derivation.
	2.	convection – lapse rate – Stability of the atmosphere	2	K2(U)	Lecture , discussion , PPT	Concept definitions, MCQ.
	3.	Newton's law of cooling – determination of specific heat capacity of liquid	3	K4(An)	Lecture using Chalk and talk , Demonstration, discussion, Derivation.	Evaluation through short test, MCQ, True/False, Derive specific heat relation.
	4.	Radiation - black body – Kirchhoff's law – Stefan – Boltzmann law - energy distribution in black body spectrum	3	K4(An)	Lecture using videos, Problem solving,	Evaluation through Definition, Interpretation of a graph.
	5.	Wien's law – Rayleigh Jean's law– Planck's law - solar constant – water flow pyroheliometer.	2	K1(R)	Group Discussion, Lecture using videos,	Evaluation through Definition, Differentiate different laws.
IV	Kinetic	Theory of Gases				

	1.		3	K1(R)	Lecture using	Evaluation
		Kinetic Theory of gases- assumptions - Molecular collisions – mean free path – expression for mean free path	-		Chalk and talk , discussion, Derivation.	through short test, MCQ, True/False, Derive mean free path.
	2.	Transport Phenomenon – Brownian motion and its features – expression for viscosity.	3	K2(U)	Lecture , discussion , PPT	Evaluation through Different phenomena's, derive viscosity.
	3.	Diffusion and thermal conductivity of gas.	1	K3(Ap)	Lecture using Chalk and talk, discussion.	Evaluation through Definition,MC Q.
	4.	Experimental verification -Vander walls equation of state - Determination of Vander walls constant	2	K5(E)	Lecture using Chalk and talk , discussion, Derivation.	Long Derivations, MCQ, Relations
	5.	Relation between Vander Wall's constant and critical constants.	3	K5(E)	Lecture , discussion , PPT, Derivation.	Long Derivations, MCQ, Relations
V	Thermo	odynamics				<u> </u>
	1.	Zeroth and first law of thermodynamics – reversible and irreversible processes	2	K2(U)	Lecture discussion, PPT	Evaluation through Definition, MCQ, Differentiate the process.
	2.	isothermal process- adiabatic process-gas equation during adiabatic process - work done during adiabatic and isothermal process	2	K2(U)	Lecture using Chalk and talk , discussion, Derivation.	Evaluation through Definition, MCQ, Differentiate the process and calculate work done.
	3.	second law of thermodynamics – Carnot's engine – its efficiency.	2	K3(Ap)	Lecture discussion, PPT	Longer essay, MCQ.
	4.	Entropy – change of entropy in reversible	2	K3(Ap)	Lecture using Chalk and talk	Evaluation through

	and irreversible processes – temperature – entropy diagrams – physical significance of entropy - change of entropy when ice converted into steam			, discussion, Derivation.	Definition, MCQ, Derive entropy.
5.	third law of thermodynamics – Extensive and Intensive thermodynamic variables – distinction between them	2	K4(An)	Group discussion, PPT	Check knowledge in different types of variables, Discussion,
6.	Maxwell thermodynamical relations – derivation and application -	1	K5(E)	Lecture using Chalk and talk , discussion, Derivation.	Evaluation through derivation.
7.	Clausius - Clapeyron equation and specific heat relation	1	K3(Ap)	Lecture using Chalk and talk , discussion, Derivation.	Evaluation through derivation.

Course Focussing on Employability/ Entrepreneurship/ Skill Development : Skill Development

Activities (SD): Hands on training on refrigerators and air- conditioning machines.

Course Focussing onCross Cutting Issues(Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues :-

Assignment : Differentiate the types of thermoelectric effects.

Seminar Topic: -

Sample questions (minimum one question from each unit)

Part A

- 1. The unit of Peltier coefficient is...... (K2-U, CO-1)
- 2. Calculate the temperature of inversion of Cu-Fe thermocouple, if the cold junction is at 100°C. (K4-An, CO-2)
- 3. Which of the following is a poor conductor of heat ? (K2-U, CO-3)

a)Copper b) air c) aluminium d) all of these

- 4. In an isothermal process, the heat supplied to the ideal gas is equal to the work done by the gas. (State True/False) (K4-An, CO-4)
- 5. Who first introduced the concept of Entropy? (K2-U, CO-3)

Part B

- 6. Describe the principle and working of Platinum resistance thermometer.(K2-U, CO-1)
- 7. Describe Joly's differential steam calorimeter method to find Cv. (K2-U, CO-1)
- 8. Explain the principle and propagation of Rectilinear flow of heat along a bar with one end heated simultaneously. (K2-U, CO-1)
- 9. Derive the change of entropy when ice converted into steam. (K4-An, CO-4)
- 10. Differentiate extensive variable from the intrinsic variables. (K4-An, CO-4)

Part C

- 11. Describe the experimental details of Callender and Griffiths bridge and calculate the correction value. Give its advantage and disadvantages. (K2-U, CO-1)
- 12. How will you find specific heat capacity of gas in the Callender and Barnes continuous flow method? Explain in detail. (K2-U, CO-1)
- 13. How will you determine the specific heat capacity of a liquid using Joule's Electrical method? Explain. (K2-U, CO-3)
- 14. Derive the relation for change in entropy during the reversible process. (K5-E, CO-5)
- 15. Derive Maxwell's thermodynamic relations. (K5-E, CO-5)

Dr.C.Nirmala Louis Head of the Department Dr.M.Abila Jeba Queen Course Instructor

Department	: Physics
Class	: II B.Sc. Physics
Title of the Course	: Core III: Non-Conventional Energy Sources
Semester	: III
Course Code	: PC2032

	L T P Cred		C 14-	Ter et II errere	Total	Marks					
Course Code	L	I	P	Creatts	Inst. Hours	Hours	CIA	CIA External			
PC2032	4	-	-	4	4	60	30	70	100		

Objectives

- 1. To provide an understanding of the present energy crisis and various available energy sources.
- 2. To make the students to understand the present day crisis of need for conserving energy and their alternatives.

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO 1	Apply the solar energy in various sectors.(industry,agriculture and domestic purposes)	PSO - 3	Ap
CO 2	Explain the basic principles of wind energy conversion, various Biomass conversion Processes and its classification.	PSO - 1	U
CO 3	Discuss the geothermal energy resources and chemical energy resources. (fuel cells)	PSO - 2	An
CO 4	Solve the present and future energy crisis.	PSO - 8	С

Un it	Mod ule	Торіс		ching ours	Cognitive level	Pedagogy	Assessment/Evaluat ion
Ι	Introd	luction to Energy S	ource	S			
	1	World's reserve of Commercial energy sources and their availability		4	K1(R)	PPT, Illustration and group discussion	Evaluation through: Online quiz, short questions Descriptive answers
	2	-India's production and reserves		3	K4(Ap)	PPT, Illustration, design and group discussion	MCQ, True/False, Short essays, Concept explanations, Short summary or
	3	Conventional and non-conventional sources of energy, comparison – Coal- Oil and natural gas		3	K2(U)	PPT, Illustration and group discussion	overview Formative assessment I
	4	applications - merits and demerits		2	K6(C)	Illustration, design and group discussion	
II	Solar	Thermal Energy				-	
	1	Solar constant -Sol spectrum-Solar radiations outside earth's atmosphere the earth surface-o tilted surfaces	e —at	3	K2(U)	PPT, Illustration and group discussion	Evaluation through: Online quiz, short questions Descriptive answers
	2	Solar Radiation geometry-Basic Principles of Liqu flat plate collecto		3	K1(R)	PPT, Illustration and group discussion	Formative assessment I
	3	Materials for flat pl collector - Construction and working- Solar distillation		3	K4(An)	PPT, Illustration and group discussion	
	4	Solar drying-Sola cooker (box type) Solar water heatin systems – Swimmi pool heating.)- Ig	3	K3(Ap)	PPT, Illustration and group discussion	

Total Contact hours: 90 (Including lectures, assignments and tests)

III	Photo	voltaic Systems				
	1	Introduction- Photovoltaic principle- Basic Silicon Solar cell- Power output and conversion efficiency- Limitation to photovoltaic efficiency	4	K1 (R)	PPT, Illustration and group discussion	Evaluation through: Online quiz, short questions Descriptive answers MCQ, True/False, Short essays, Concept explanations, Short
	2	Basic photovoltaic system for power generation- Advantages and disadvantages. Types of solar cells	4	K4(An)	PPT, Illustration and group discussion	summary or overview Formative assessment I/II
	3	Application of solar photovoltaic systems - PV Powered fan – PV powered area - lighting system – A Hybrid System.	4	K6(Ap)	PPT, Illustration, group discussion and design of solar cell	
IV	Biom	ass Energy				
	1	Wind Energy Conversion- Classification and description of wind machines, wind energy collectors-Energy storage Energy from Oceans and Chemical energy resources	4	K1(R)	PPT, Illustration and group discussion	Evaluation through: Online quiz, short questions Descriptive answers MCQ, True/False, Short essays, Concept
	2	Ocean thermal energy conversion-tidal power, advantages and limitations of tidal power generation- Energy and power from waves- wave energy conversion devices- Fuel cells- and application of fuel cells	5	K3(Ap)	PPT, Illustration and group discussion	explanations, Short summary or overview Formative assessment II
	3	Batteries- advantages of battery for bulk energy storage- Hydrogen as	3	K6(C)	PPT, Illustration and group discussion	

					11.	
		alternative fuel for			and design	
		motor vehicles			of batteries	
V		gy and Other Energy So			•	
	1	Wind Energy	4	K2(U)	Discussion	Evaluation
		Conversion-			PPT	through: Online
		Classification and			Circuit	quiz,
		description of wind			designing	short questions
		machines, wind				Descriptive
		energy collectors				answers
	2	Energy storage	4	K3(Ap)	PPT,	MCQ, True/False,
		Energy from Oceans		_	Illustration	Short essays,
		and Chemical energy			and group	Concept
		resources-Ocean			discussion	explanations, Short
		thermal energy				summary or
		conversion-tidal				overview
		power, advantages and				
		limitations of tidal				Formative
		power generation				assessment II
	3	Energy and power	4	K6(C)	PPT,	
		from waves- wave			Illustration	
		energy conversion			and group	
		devices- Fuel cells-			discussion	
		and application of fuel			and design	
		cells- batteries-			of fuel cells	
		advantages of battery				
		for bulk energy				
		storage- Hydrogen as				
		alternative fuel for				
		motor vehicles.				
		motor vomeres.				
L				1	1	1

Course Focussing on Employability/ Entrepreneurship/ Skill Development : Employability

Activities (Em/ En/SD): Project

Course Focussing onCross Cutting Issues(Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Environment Sustainability

Activities related to Cross Cutting Issues :-

Assignment : (Mention Topic and Type): Analysis of the nuclear power plant in India

Seminar Topic: (if applicable): Analysis and design of solar panels

Sample questions (minimum one question from each unit)

Part A (1 mark)

1. _____is the end product of natural process of decomposition of organic matter. (K2- U, CO 1)

- 2. State True / False. India's resources of uranium are extensive. (K1- R, CO 1)
- 3. The radiation received from the sun on the earth is _____.(K2- U, CO 1)
 - a) parallel b) vertical
 - c) perpendicular d) none of these
- 4. The maximum temperature obtained in a Parobolic disc concentrater type solar cooker is ____
 - a) 300°C
 - b) 400°C
 - c) 350°C
 - d) 450°C
- 5. The most efficient solar cell is the cell formed by (K2-U, CO 1)
 - a) pn homojunction b) pn heterojunction
 - c) Schottkey junction d) None

Part B (4 marks)

- 1. Write a short note on Conventional and non-conventional sources of energy. (K2- U, CO1)
- 2. Write a short note on solar radiation at the earth surface. (K2- U, CO1)
- 3. With neat diagram explain the working of a PV powered fan. (K6- 6, CO4)
- 4. How is energy generated from Biomass? Brief out your answer. (K2-U, CO1)
- 5. Write a short note on different methods of OTEC generation. (K2- U, CO1)

Part C (8 marks)

- 1. What are the world's reserves of commercial energy sources? (K2- U, CO1)
- 2. What are the reasons for variation in solar radiation reaching the earth than received at the outside of the atmosphere? (**K2-U**, **CO1**)
- 3. Obtain expressions for conversion efficiency and power output for photovoltaic devices and explain them. (K5- E, CO3)
- 4. Discuss the Bio-mass conversion technologies. (K3- Ap, CO1)
- 5. With a neat diagram explain the basic components of WECS. (K2- U, CO1)

Ms.Jenepha Mary

Head of the Department

Course Instructor

Department	: Physics
Class	: II B.Sc Chemistry
Title of the Course	: Allied Physics I for Chemistry
Semester	: III
Course Code	: AP2031

Comme Code	т	т	п	C	In at II around	Total		Marks	
Course Code	L	I	P	Creatts	Inst. Hours	Hours	CIA	External	Total
AP2031	4	-	-	3	4	60	40	60	100

Objectives

- 1. To understand the concept of strength of materials, viscous properties of Liquids, heat transformation from one place to another, converting heat to do mechanical work.
- 2. To understand basic properties of light such as interference and diffraction.

СО	Upon completion of this course the students will be ableto:	PSO addressed	CL
CO – 1	Understand the fundamental concepts of Physics.	PSO-1	U
CO – 2	Analyse the concepts and study the applications of Thermodynamics, material properties heat and optics.	PSO-2	An
CO – 3	Apply their depth knowledge of Physics in day today life.	PSO-3	Ар
CO – 4	Develop their knowledge and carry out the practical by applying these concepts	PSO-5	R

Allied Physics - I for Chemistry

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/Evaluation
Ι	Proper	ties of Matter				
	1	Young's modulus – Rigidity modulus – Bulk modulus – Poisson's ratio (definition alone)	2	K1(R)	Illustration and lecture	Evaluation through: quiz, short questions Multiple Choice,
	2	Bending of beams – Expressionfor bending moment	1	K2(U)	Illustration and theoretical derivation	questions . Deriving theoretical
	3	Determination of Young' modulus – uniform and non uniform bending. Expression for Couple per unit twist	2	K2(U)	Illustration, theoretical derivation and Practical	Formulas Problem solving Formative assessment
	4	Work done in twisting a wire – Torsional oscillations of a body– Rigidity modulus of a wire and M.I. of a disc by torsion pendulum	3	K2(U)	Lecture and theoretical derivation	
II	Conduc	ction in solids		•		
	1	Thermal Conductivity – Lee's disc method – Relation	2	K1(R)	Lecture discussion with illustration	Multiple choice, questions,

		between thermal and electrical conductivities.				Deriving
	2	Widemann – Franzlaw – Convection:	1	K2(U)	Illustration, theoretical derivation and Demonstration	theoretical formulas Formative
	3	Newton's law of cooling – Determination of specific heat capacity of liquid	1	K3(Ap)	Lecture Illustration	assessment
	4	Radiation: Distribution of energy in the spectrum of black body - Results	2	K3(Ap)	Lecture Discussion	
III	Viscosi	tv				
	1	Viscosity – Viscous force – Co- efficient of viscosity – Units and dimensions Poiseuille's formula for co- efficeint of viscosity of a liquid – determination of coefficient of viscosity using burette and comparison of viscosities.	3	K1(R) K2(U)	Illustration, Theoretical formulation Problem solving Illustration, Theoretical formulation Practical demonstration	Evaluation through: quiz, short test Assignment on applications. Problem Solving Formative assessment
	3	Bernoulli's theorem – Statement and proof – Venturimeter – Pitot tube.	2	K3(Ap)	Lecture, Illustration, Theoretical formulation Practical	
IV		odynamics				
	1	Zeroth and First Law of thermodynamics – Second law of thermodynamics	2	K2(U)	Lecture, Demonstrati on, theoretical formulation	Evaluationthrough: quiz, shortquestions Multiple choice, questions, Deriving theoreticalformulas

		C	2		T (Es mass d'ann
	2	Carnot's engine	3	K3(Ap)	Lecture,	Formative
		and Carnot's			Demonstrati	assessment
		cycle –			on,	
		Efficiency of a			theoretical	
	2	Carnot's engine	2		formulation	
	3	Entrophy –	3	K4(An)	Lecture,	
		Change in			Demonstrati	
		entropy in			on,	
		reversible and			theoretical	
		irreversible			formulation	
		process –				
		change in entropy of a				
		perfect gas –				
		change in entropy when				
		ice is converted				
		into steam.				
V	Ontios	into steam.				
•	Optics 1	Interference –	3	K1(R)	Illustration,	Evaluationthrough:
	L L	conditions for	5	KI(K)	Theoretical	quiz, Deriving
		interference			formulation	theoreticalformulas
		maxima and			Demonstration	Assignment on
		minima – Air			Demonstration	application
		wedge –				Formative assessment
		thickness of a				i officitive assessment
		thin wire –				
		Newton's rings				
		– determination				
		of wavelength				
		using Newton's				
		rings.				
	2	Diffraction –	4	K1(R)	Lecture	
		difference	-	()	Demonstration	
		between			Theoretical	
		diffraction and			formulation	
		interference –				
		Theory of				
		transmission				
		grating – normal				
		incidence.				
	3	Optical activity	4	K2(U)	Lecture	
		– Biot's laws –			Demonstration	
		specific rotatory			Theoretical	
		power –			formulation	
		determination of				
		specific rotator				
		power using				
		Laurent's half				
		shade				
1		polarimeter.				

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities (Em/ En/SD): Practicals

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Nil

Activities related to Cross Cutting Issues: Nil

Assignment: (Mention Topic and Type): Zeroth and First law of Thermodynamics.

Seminar Topic: (if applicable): Nil

Sample questions (minimum one question from each unit)

Part A (1 mark)

- The ratio of volume stress to volume strain is called------(K2- U, CO 1)
 Bulk modulus (b) rigidity modulus (c) young's modulus (d) all the above
- 2. The coefficient of convection is defined as the ratio(K1- R, CO 4)

a)
$$C = \frac{H\theta}{A}$$
 b) $C = \frac{A\theta}{4}$ c) $C = \frac{H}{A}$ d) $C = \frac{H}{A\theta}$

3. Double refraction does not take place(K4- An, CO 2)

(a) in quartz (b) in calcite (c) in water (d) none of the above

4. Newton's law of cooling can be used to determine the (K3- Ap, CO 3)

a) Specific heat capacity of gases b) Specific heat capacity of liquid

5. c) Specific heat capacity of solids d) Specific heat capacity of solid, liquid gases
What is the velocity of the liquid along the axis of the tube? (K2- U, CO 1)
a) Zench) minimum (a) monimum (b) and ignt variation

a) Zerob) minimum c) maximum d) gradient variation

Part B (3 marks)

- 6. Compare different Modulus of Elasticity? (K2-U, CO 1)
- 7. Experiment Newton's law of cooling and verify it. (K3- Ap, CO 3)
- 8. Examine the coefficient of viscosity of a liquid by a variable pressure head method. (**K4- An, CO 2**)
- 9. Examine zeroth law of thermodynamics and prove it. (K4- An, CO 2)
- 10. Define Stoke's law. Give the condition for maxima and minima. (K1- R, CO 4)

Part C (7 marks)

- 11. With neat diagram explain the theory of Non-uniform bending for a beam of rectangular cross section.(K3- Ap, CO 3)
- Examine Lee's disc method for finding the coefficient of thermal conductivity for bad conductors. (K4- An, CO 2)
- 13. With the help of Bernoulli's theorem and explain the working of the Pitot tube.(K3- Ap, CO 3)
- 14. Illustrate the change of entropy when ice is converted into steam.(K2- U, CO 1)
- 15. Analyze how you will determine the specific rotatory power using Laurent's half shade polarimeter.(K4- An, CO 2)

Head of the Department

Sr.S.Sebastiammal Course Instructor

DEPARTMENT OF PHYSICS

HOLY CROSS COLLEGE (Autonomous), Nagercoil-629004

III BSc Physics

Teaching Plan

Semester V

Major Core -- V

Name of the Course : Classical and Statistical Mechanics

Subject code : PC2051

Hours/Week	Credits	Total Hours	Marks
6	5	90	100

Learning Objectives

- 1. To understand the mechanics of systems of particles and their equations of motion
- 2. To study the concept of statistics of molecules.

Course Outcome

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO- 1	understand the basic mechanical concepts related to system of particles	PSO-1	U
CO-2	apply various mechanical principles to find solution for physical problem	PSO-4	Ар
CO- 3	solve the equations of motion using Hamiltonian formalism	PSO-6	С
CO- 4	explain the fundamental postulates of statistical mechanics and Maxwell Boltzmann statistics	PSO-1	R
CO- 5	understand and develop a scientific knowledge in quantum statistics	PSO-7	U

Credits: 5 Total contact hours: 90 (Including assignments and tests)

Unit	Section	Topics	Lecture hours	Cognitiv e level	Pedagogy	Assessment/ Evaluation
Ι	Mechani	ics of a System of Parti	cles			
	1	External and internal forces, center of mass	4	K1(R)	Lecture Discussion with PPT illustration	Evaluation through: Online quiz, short questions Descriptive answers MCQ, Problem solving. True/False
	2	Conservation of linear momentum- Conservation of angular momentum- Conservation of energy- work- energy theorem-	5	K1(R)	Lecture discussion	True/False, Short essays, Concept explanations, Short summary or overview Formative
	3	Conservative forces- examples- Constraints-Types of constraints- Examples- Degree of freedom-	5	K2(U)	Lecture discussion	assessment I
	4.	Generalized coordinates (transformation equations) – Generalized Velocities- Generalized Momentum.	4	K2(U)	Lecture discussion, PPT	
П	Lagrang	gian Formulations Principle of virtual work, D'Alembert's principle	4	K2(U)	Lecture Discussion with PPT Illustration	Evaluation through: Online quiz, short questions Descriptive
	2	Lagrange's equation of motion for	4	K3(Ap)	Lecture discussion	answers

						MCO Duelland
		conservative and non				MCQ, Problem
	3	conservative systems	5		DDT	solving.
	3	Simple applications-	5	K3(Ap)	PPT,	True/False,
		simple pendulum- Atwood's machine-			Illustration,	Short essays,
					Theoretical	Concept
		compound pendulum			formulation, Derivation	explanations,
	4	Homilton's minoinlo	5	$V_2(\Lambda n)$		Short summary or overview
	4	Hamilton's principle- Deduction of	3	K3(Ap)	PPT,	Formative
					Illustration, Theoretical	assessment I
		Lagrange's equation of motion from				
		Hamilton's principle			formulation, Derivation	
		- Deduction of			Derivation	
		Hamilton's principle				
		from D'Alembert's				
		principle				
III	Hamilto	nian Formulations				
111	1	Phase space- The	6	K2(U)	Lecture with	
	-	Hamiltonian			PPT	Evaluation
		function H-			Illustration	through: Online
						quiz,
		Hamilton's				short questions
		Canonical equation				Descriptive
		of motion				answers
						MCQ, Problem
	2	Physical significance	6	K3(Ap)	Question-	solving.
		of H-Deduction of			answer	True/False,
		Canonical equation			session	Short essays,
		from a variational				Concept
		principle			Lecture	explanations,
						Short summary
	3	Applications-	6	K4(An)	PPT,	or overview
		Harmonic Oscillator-			Illustration,	Formative
		Planetary motion-			Theoretical	assessment I/II
		Compound			formulation,	
		pendulum			Derivation	
IV			-		L _	
	1	Micro and macro	6	K1(R)	Lecture	Evaluation
		states- The mu-space			D	through: Online
		and gamma space-			Discussion	quiz,
		fundamental				short questions
		postulates of				Descriptive
		statistical mechanics				answers MCQ,
	2	Ensembles- different	6	K2(U)		True/False,
	-			112(0)	Lecture	Short essays,
		types- Thermo			Lociulo	Short Ussays,

	3	dynamical probability - entropy and probability Boltzmann's theorem- Maxwell- Boltzmann statistics- Maxwell- Boltzmann energy distributive law- Maxwell- Boltzmann velocity distributive law.		K3(Ap)	Discussion PPT, Illustration, Theoretical formulation, Derivation	Concept explanations, Short summary or overview Formative assessment II
V	Quantur	n Statistics				
	1 2	Development of Quantum statistics- Bose- Einstein and Fermi- Dirac statistics- Derivation of Planck's radiation formula from Bose– Einstein statistics ,	5	K2(R) K2(U)	PPT, Illustration, Theoretical formulation, Derivation PPT, Illustration, Theoretical formulation, Derivation	Evaluation through: Online quiz, short questions Descriptive answers MCQ, True/False, Short essays, Concept
	3	Free electrons in metal- Fermi Gas- Difference between classical and quantum statistics	4	K4(An)	PPT, Illustration, Theoretical formulation, Derivation	explanations, Short summary or overview Formative
	4	Free electrons in metal- Fermi Gas- Difference between classical and quantum statistics	4	K3(Ap)	Lecture, ppt Illustration, Theoretical formulation,	assessment II

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities (Em / En /SD): **Problem solving, Discussion**

Course Focussing onCross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Environment Sustainability activities related to Cross Cutting Issues :-

Assignment: (Mention Topic and Type): Problem solving

Seminar Topic: (if applicable): Analysis of different types of statistics

Sample questions (minimum one question from each unit)

Part A (1 mark)

- 1. Force on the system is zero, its total linear momentum is constant.(True/False) (**K2-U**, **CO1**)
- 2. Virtual work done by all the applied forces must be zero under the condition that the virtual work done by the constraint forces is also zero. True / False. (K3- Ap, CO2)
- 3. The equation of motion of a simple pendulum is _____ K3 Ap, CO2)
- 4. Analyze the thermodynamic probability in the equilibrium state ------ (K4-An,CO3)
- 5. The statistics which obeys Pauli's exclusion principle is known as ------ (K5-E, CO4)

Part B (4 marks)

- 1. Estimate that for a conservative force (K2- U, CO1)
 - i. $\oint F. dr = 0$
 - ii. Curl F = 0
- 2. Produce an expression for D'Alemberts principle of virtual work. (K3 Ap, CO2)
- 3. Compose the equation of motion for a compound pendulum. (K6- C, CO3)
- 4. Compare and contrast M-B statistics, F-D statistics and B-E statistics.K5-E, CO3)
- 5. Distinguish classical and quantum statistics. (K2- U, CO5)

Part C (8 marks)

1. Discuss that the angular momentum of a system of particles is conserved. (K2 – U,CO1)

2. Illustrate the Lagrangian equation of motion using D'Alemberts principle.a. (K3 – Ap, CO2)

3. Formulate the Hamiltonian function for linear harmonic oscillator. (K6- C, CO3)

4. Evaluate an expression for the distribution of ni particles in the energy levels (Ei) by using Maxwell- Boltsman statistics (K5- E, CO2)

5. Evaluate the expression for Planck's radiation formula from Bose-Einstein statistics

Course instructors: Dr.A.Lesly Fathima and Dr.S.J Jenepha Mary

Head of the Department: Dr. C. Nirmala Louis

Teaching Plan

Department	:	Physics
Class	:	III B.Sc Physics
Title of the Course	:	Major Core- VI- Analog Electronics
Semester	:	V
Course Code	:	PC2052

Correct Cords	т	т	n	C l'4-	Ter et II eren	Total		Marks	
Course Code	L	L T P Credits Inst. Hours	Inst. Hours	Hours	CIA	External	Total		
PC2052	6	-	-	5	6	90	25	75	100

Objectives

- To impart in depth knowledge about Semiconductors, Diodes, Transistors, Operational Amplifiers, Oscillators etc
 To enable the students to understand the aspects of analog electronics in a lucid and
- comprehensive manner.

Course outcomes

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	understand the fundamental principles of semiconductors including P-N junctions and zener diode	PSO-1	K2
CO - 2	illustrate network theorems like Thevenin's theorem, Norton's theorem etc.,	PSO-2	К2
CO - 3	analyze the operation of transistor, amplifier, oscillator and multivibrator	PSO-3	K5
CO - 4	demonstrate practical skills in the simulation, construction and testing of simple electrical and electronic circuits.	PSO-6	К3

Teaching plan

	Modul	— •	Teachin	Cognitive	Pedagogy	Assessment/
Unit	e	Торіс	g Hours	Level		Evaluation
Ι	Linear	circuit analysis and semicon		iodes		
	1	Constant voltage source - constant current source - Maximum power transfer theorem - Thevenin's theorem - procedure for finding Thevenin Equivalent circuit	5	K3 (Ap)	Lecture, Group Discussion and Problem Solving	Evaluation through: Online quiz, short questions
	2	PN junction theory - V-I characteristics of a PN junction diode - Half wave rectifier - Bridge rectifier - Efficiency	5	K3 (Ap)	Lecture, Group Discussion and Problem Solving	Descriptive answers MCQ, True/False, Concept
	3	filters - Shunt capacitor filter – pi filter - Zener diode - equivalent circuit - voltage regulator	4	K3 (Ap)	Lecture, Group Discussion and Problem Solving	explanations, Formative assessment I
	4	LED - V-I characteristics – advantages - applications - photo diode - characteristics applications	4	K2 (U)	Group Discussion and lecture	
II	Transis	stor Amplifier				
	1	Transistor - Different modes of operations-CB mode & CE mode	4	K2 (U)	Demonstration and lecture	Evaluation through:
	2	Two port representation of a transistor- h parameter - AC equivalent circuit using h parameters- analysis of amplifiers using h parameters (CE only)	4	K3 (Ap)	demonstration and lecture – cum- discussion, Problem Solving	Online quiz, short questions Descriptive answers MCQ,
	3	RC coupled amplifier - transformer coupled amplifier	3	K4 (An)	Lecture-cum- Discussion and Demonstration	True/False, Concept explanations,
	4	Power amplifier	1	K4 (An)	Lecture- cum- discussion	Formative assessment I
	5	Classification of amplifiers - Class A, Class B and Class C	4	K4 (An)	Group Discussion and lecture	Multiple choice, question s,

Total Contact hours: 90 (Including lectures, assignments and tests)

	6	Push pull amplifier – Emitter follower	2	K4(An)	Lecture, Group Discussion	Formative assessment
III	Oscilla	tors and Multivibrator				
	1	Principle -effect negative feedback-and Barkhaussen criterion	4	K5(E)	Lecture-cum- discussion, Problem solving	Evaluation through: Online quiz,
	2	Phase shift and Wien Bridge oscillators using transistors – Expression for frequency	5	K5 (E)	Lecture, Group discussion, Problem solving	short questions Descriptive answers MCQ,
	3	Multivibrators- Astable and ,Monostable	4	K4 (An)	Demonstration, Lecture-cum- discussion	True/False, Concept explanations,
	4	Bistable multi vibrators using transistors - Schmitt trigger.	5	K4 (An)	Demonstration, Lecture-cum- discussion	Formative assessment I
IV	Special	Semiconductor Devices				
	1	Clipping and clamping circuits	3	K4 (An)	Lecture-cum- discussion, PPT	Evaluation through:
	2	Differentiating circuit - Integrating circuit	4	K4 (An)	Lecture, Demonstration, Group discussion	Online quiz, short questions Descriptive
	3	Field effect Transistor FET- MOSFET	4	K4 (An)	Lecture-cum- discussion	answers MCQ,
	4	UJT-SCR -characteristics - FET as a VVR	4	K4 (An)	Lecture-cum- discussion	True/False, Concept
	5	UJT relaxation oscillator-SCR as a switch and rectifier	3	K4 (An)	Lecture-cum- discussion	explanations, Formative assessment I
V	Operat	ional Amplifier				
	1	Operational Amplifier- characteristics-parameters- applications- Inverting amplifier - Non inverting amplifier	5	K2 (U)	Lecture-cum- discussion, Demonstration	Evaluation through: Online quiz, short questions
	2	Voltage follower- Adder - Subtractor - Integrator – Differentiator	5	K2 (U)	Lecture-cum- discussion, Demonstration	Descriptive answers MCQ, True/False,
	3	Solving simultaneous	4	K3 (Ap)	Lecture-cum-	Concept

	equations-comparator -square			discussion,	explanations,
	wave generator			Demonstration	
4	Wien bridge oscillator -Schmitt	4	K2 (U)	Lecture-cum-	Formative
	trigger			discussion,	assessment I
				Demonstration	

Course Focussing on Employability/ Entrepreneurship / Skill Development: Skill Development

Activities (Em/ En/SD): Project

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment

Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues: -

Assignment: (Mention Topic and Type): Problems in Linear circuit Analysis

Seminar Topic: (if applicable): -

Sample questions (minimum one question from each unit)

Part A (1 mark)

1. Which one of the following	s is an example of	alternating voltage source? (K2-U, CO-2)
a) dc generator	b) ac generato	or
c) cells	d) battery	
2. The current amplification fa	actor is given by -	(K5-E, CO 3)
3. An oscillator converts	_(K2-U, CO-1)	
a. a.c power into d.c powe	r	b. d.c power into a.c power
c. mechanical power into	a.c power	d. none of the above
4. Astable multivibrator contin	uously produces	the square wave output, it is referred as
multivibrator.(K2-U, CO-1)	
5. In integrated chip 741, the	pin 2 denotes	(K2-U, CO-1)
a) - Vcc	b) off set null	

c) non- inverting input d) inverting input

Part B (4 marks)

- 1. An audio amplifier produces an alternating output of 12 V before the connection to a load. The amplifier has an equivalent resistance of 15Ω at the output. What resistance the load need to have to produce maximum power? Also calculate the power output under this condition. (K5-E, CO-3)
- 2. Describe Push pull amplifier. (K3-Ap, CO4)
- 3. Compute the nature of the oscillations produced by tank circuit. (K3-Ap, CO-4)
- 4. Recognize FET as a VVR. (K2-U, CO-2)
- 5. Explain briefly the integrator. (K2-U, CO-2)

Part C (8 marks)

1. A generator develops 200V and has an internal resistance of 100 Ω . Find the power delivered to a load of (i) 100 Ω (ii) 300 Ω . Comment on the result. (K5-E, CO-3) 2. Compare RC Coupled amplifier and transformer coupled amplifier. (K4-An, CO-3) 3. Differentiate the three types of Multivibrators in detail. (K2-U, CO-2) 4. Outling Field Effect Transistor and explain MOSEET (K2-U, CO-2)

4. Outline Field Effect Transistor and explain MOSFET.(K2-U, CO 2)

5. Discuss in detail about the Voltage follower. (K2-U, CO-2)

Head of the Department

Course Instructor

Dr. C. Nirmala Louis

Dr. M. Priya Dharshini & Dr. R. Krishna Priya

Teaching Plan

Department :PhysicsClass :III B.Sc PhysicsTitle of the Course :Core VII: Solid State PhysicsSemester :VCourse Code :PC2053

Comme Code	т	т	р	Care ditta	In at II and	Total		Marks	
Course Code	ode L T P Credits Inst. Hour	Inst. Hours	Hours	CIA	External	Total			
PC2053	5	-	-	5	5	75	30	70	100

Objectives

- To impart knowledge on the structure of crystals and the different types of materials.
- To develop a scientific attitude at micro and nano scales of materials

Course outcomes

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	illustrate various types of bonding present in solids with example.	PSO - 1	U
CO - 2	explain the various crystal parameters and structures.	PSO - 3	Е
CO - 3	discuss the various theories involved in magnetic materials. (dia, para, ferro, ferri and antiferro magnetism)	PSO - 3	С
CO - 4	describe polarization processes and analyze the information contained in the temperature and frequency dependence of dielectric materials.	PSO - 1	С
CO - 5	analyze the structure and physical properties of semiconductors.	PSO - 5	An
CO - 6	describe and discuss the theory of superconductivity and superconducting materials.	PSO - 2	С

Teaching plan

Unit	Module	Торіс	Teachin g Hours	Cognitive level	Pedagogy	Assessment/Evaluation
Ι	Bondin	g in Solids	Hours			
	1	Types of bonds in crystals - Ionic, covalent, Metallic, Vander waal's and Hydrogen Bonding	4	K1(R)	PPT, Illustration and theoretical derivation,	Evaluation through: Online quiz, Problem solving short questions Descriptive answers MCQ, True/False, Short essays, Concept
	2	Bond energy of sodium chloride molecule - variation of inter atomic force with inter atomic spacing	4	K3(Ap)	Derivation and group discussion, block diagram	explanations, Short summary or overview Formative assessment I
	3	Cohesive energy - cohesive energy of ionic solids - application to sodium chloride crystal	3	K6(C)	PPT, Illustration, Theoretical formulation Discussion and Problem Solving	
	4	Evaluation of Madelung constant for sodium chloride	4	K5(E)	Derivation and group discussion Problem Solving	
II		Structure and C	rystal Dif	fraction		
	1	Crystal Lattice -Primitive and unit cell-seven classes of crystal-Bravais Lattice- Miller Indices	4	K2(U)	PPT, Derivation discussion Demonstratio n	Evaluation through: Online quiz, Problem solving short questions

Total Contact hours: 75 (Including lectures, assignments and tests)

	2	Crystal	4	K4(An)	Derivation	Descriptive
	2	Diffraction –	-		and group	answers
		Bragg's Law			discussion	Formative
		Diagg 5 Law			problem	assessment I
					solving	assessment 1
					solving	
	3	Experimental	3	K3(A)	Illustration,	
		methods-Laue			Theoretical	
		method,			formulation	
		powder method			PPT,	
		and rotating			Derivation	
		crystal method			discussion	
					Demonstratio	
					n	
	4		4	K5(E)	Derivation	
		Reciprocal			and group	
		lattice-			discussion	
		Intensity and			problem	
		structure factor.			solving	
III	Magne	tic Properties				
	magne	ue i roper des				
	1	a	4	K3(Ap)) PPT,	Evaluation
		Spontaneous			Illustration	through: Online
		Magnetization			and	quiz,
		– Weiss Theory			theoretical	Problem solving
		– Temperature			derivation,	short questions
		dependence of				Descriptive
		Magnetization				answers MCQ,
	2	Classical	4		Devicestieve	True/False, Short
	2	Classical Theory of	4	K2(U)	Derivation	essays, Concept
		Theory of Diamagnetic			and group discussion,	explanations, Short
		Diamagnetism				summary or
					block	overview
	3	Waiss theory of	3	VG(C)	diagram Derivation	
	5	Weiss theory of Para	3	K6(C)	and group	Formative
		magnetism-			discussion,	assessment I/II
		Ferromagnetic			PPT	
		domains –			Block	
		Bloch wall			diagram	
					designing	
<u> </u>	4	Basic ideas of	4	K4(An)	PPT,	
		anti-		× /	Illustration,	
		ferromagnetism -			Theoretical	
		Ferri magnetisms			formulation	
		– Ferrites in				
		computer Momorios				
IV	Dialact	Memories.				
11	Dielect	ric Properties				

	4		4	U (1/ D)		
	1	Band theory of solids – classification of insulators, Semiconductors , conductors	4	K1(R)	Derivation discussion PPT, Illustration, Theoretical formulation	Evaluation through: Online quiz, Problem solving short questions Descriptive answers MCQ, True/False,
	2	Intrinsic and extrinsic semiconductor Carrier concentration for electron - Barrier Potential	4	K5(E)	Derivation and group discussion, PPT Block diagram designing	MCQ, Hue/False, Short essays, Concept explanations, Short summary or overview Formative assessment II
	3	Calculation Rectifier Equation Dielectrics - Polarization – frequency and temperature effects on polarization	4	K3(Ap)	Derivation and group discussion Block diagram designing	
	4	Dielectric loss- Clausius Mosotti relation- determination of dielectric constants.	3	K6(C)	Derivation and group discussion Block diagram designing	
V	SuperCo	nductivity			1	
	1	Introduction - General Properties of Superconducto rs - effect of magnetic field	4	K2(U)	Discussion PPT Block diagram designing	Evaluation through: Online quiz, Problem solving short questions Descriptive answers MCQ, True/False,
	2	Meissner effect-effect of current- thermal properties- entropy- specific heat -	4	K1(R)	Derivation and group discussion, PPT Block diagram designing	Short essays, Concept explanations, Short summary or overview

	energy gap - isotope effect				Formative assessment II
3	London equations - AC & DC Josephson effects - applications- Type–I and Type–II Superconducto rs	4	K3(Ap)	Derivation and group discussion Block diagram designing	
4	- Explanation for the Occurrence of Super Conductivity - BCS theory - Application of Superconducto rs - High TC superconductor S.	3	K5(E)	Derivation and group discussion, PPT	

Course Focussing on Employability/ Entrepreneurship/ Skill Development : Employability

Activities (Em/ En/SD): **Project**

Course Focussing onCross Cutting Issues(Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues :-

Assignment : (Mention Topic and Type): **Application of Superconductors - High TCsuperconductors -descriptions through Google Classroom**

Seminar Topic: (if applicable): -

Sample questions (minimum one question from each unit)

Part A (1 mark)

- A ______ is formed by sharing of valence electrons between themselves. (K5- E, CO 2)
 - a) Ionic bonds b) covalent bond c) metallic bond d) Hydrogen bond
- 2. The expression for Bragg's Law is $n\lambda =$ _____. (K2- U, CO 1) a) d sin θ b) d cos θ c) 2d sin θ d) 2d cos θ
- 3. Ferromagnetic materials exhibits magnetization even after the applied field is removed. Say True or False. (K5- E, CO 2)
- 4. At high temperature, the ionic polarizability decreases. Say true or false. (**K2- U, CO** 5. In general, superconductors are (**K4- An, CO 5**)
- a) Ferromagnets b) Antiferromagnets c) diamagnets d) paramagnets

Part B (4 marks)

- 6. Compare primary and secondary bonds .Give examples. (K5- E, CO 3)
- 7. Outline the applications of powder Xray Diffraction method. (K2- U, CO 1)
- 8. Explain about the ferrimagnetism (K2- U, CO 1)
- 9. What do you understand by intrinsic and extrinsic semiconductors? (K6- C, CO 4)
- 10. Derive the London equations in superconductors (K4- An, CO 5)

Part C (8 marks)

- Elaborate cohesive energy and derive an expression for the cohesive energy (K6- C, CO 4)
- 12. Interpret the seven crystal system with neat diagram (K5- E, CO 3)
- 13. Describe the classical theory of diamagnetism (K6- C, CO 4)
- 14. Discuss band theory of solids using energy band diagram. Discuss its bandgap

dependence. (K4- An, CO 5)

15. Discuss the outstanding contributions of BCS theory and list its limitations. (K5-E, CO 3)

Ms.C.Nirmala Louis & Ms.JV.Shally

Head of the Department

Course Instructor