Semester	: II	Major Core II
Name of the Course	: Classical Algebra and Inte	gral Calculus
Course Code	: MC2021	

No. of hours per week	Credits	Total No. of hours	Marks
6	5	90	100

Objectives:1. To give a sound knowledge in Classical Algebra.2. To solve problems in applications of Integral Calculus.

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO - 1	recall the fundamentals of algebraic equations and rules of integration.	PSO - 1	R
CO - 2	apply fundamental theorem of algebra in framing and solving equations	PSO - 5	U
CO - 3	choose appropriate method for transformation of equations	PSO - 2	Ар
CO - 4	develop the skill of evaluation of double and triple integrals over different regions	PSO - 3	Ар
CO - 5	identify Beta, Gamma functions and utilize them for the evaluation of definite integrals	PSO - 5	Ap,E
CO - 6	develop the Fourier Series expansion in any interval and apply the same for solving technical and physical problems	PSO - 4	Ap, An

Unit	Section	Topics	Lectu	Learning outcomes	Pedagogy	Assessment/
			re hours			evaluation
Ι	Theor	y of equations				
	1	Preliminaries about equations and reminder theorem Fundamental theorem of Algebra Problems based on reminder theorem Problems based on Fundamental theorem	4	Explain the primary concepts of Fundamental theorem of Algebra Problems based on reminder theorem	Lecture with Illustration	Evaluation through appreciative inquiry
	2	of Algebra In an equation with real coefficients, imaginary roots occur in pairs In an equation with rational coefficients,	3	To distinguish between imaginary roots occur in pairs and irrational roots occur in pairs	Lecture	Evaluation through quizzes and discussions.

I that contact nours, 70 (including focults, assignments and tests)	Total contact hours:	0 (Including lectures, as	signments and tests)
---	-----------------------------	---------------------------	----------------------

	irrational roots occur in			1	1
	pairs				
	Relations between				
	roots and coefficients				
	of equations				
3	Forming the equation	4	To understand	Lecture	Slip Test
	whose roots are		theFormation of the	with	
	functions of roots of		equation whose roots	Illustration	
	the given equation		are in A.P,GP,HP		
	Forming the equation				
	whose roots are in A.P				
	Forming the equation				
	whose roots are in G.P.				
	Forming the equation whose roots are in H.P				
4		4	То	Discussion	Quiz and
+	Symmetric functions of the roots	4	understandNewton's	with	Test
	Sum of r th powers of		theorem on the sum of	Illustration	1030
	the roots		the powers of the roots	musuation	
	Newton's theorem on the				
	sum of the powers of the				
	roots.				
	Problems based on				
	Newton's theorem				
II Transfo	rmation of Equations			•	
1	Transform an equation	4	To identify the	Lecture	Evaluation
					•
				Eamples	discussions.
			reciprocal equations		
	1				
	_				
	-				
2		4	To solve different types	Lecture	Evaluation
		7	• -	Lecture	
					-
					1 1 1 J
	Solving different types of reciprocal equations				
2		4	Reciprocal equations Standard form of reciprocal equations To solve different types of reciprocal equations	Lecture	Evaluation discussions.

[
		decreasing the roots of				
		a given equation by a				
		given quantity				
	3	Removal of terms	4	To calculate problems	Lecturewit	Formative
		Descarte's rule of signs		related to Descarte's	h	Assessment
		Descarte's rule of signs		rule of signs	Illustration	Test
		for negative roots				
		Problems related to				
		Descarte's rule of signs				
	4	Rolle's theorem.	3	To calculate problems	Group	Slip Test
		Problems related to		related toRolle's	Discussion	
		Rolle's theorem.		theorem		
III	Double i	integrals			·	
	1	Introduction about	3	Explain the primary	Lecture	Evaluation
		integration and Double		concepts of Double	with	through
		integrals		integrals	Illustration	discussions.
		Evaluation of double		C		
		integrals with constant				
		limits in cartesian co-				
		ordinates				
		Evaluation of double				
		integrals with constant				
		limits in polar co-				
		ordinates				
	2	Evaluation of double	4	Calculate the integrals	Lecture	Evaluation
		integrals with variable		over a specified region	with	through
		limits in cartesian co-		bounded by straight	Illustration	appreciative
		ordinates		lines		inquiry
		Evaluation of double				1. 5
		integrals with variable				
		limits in polar co-				
		ordinates				
		Evaluation of double				
		integrals over a				
		specified region				
		bounded by straight				
		lines				
	3	Evaluation of double	4	To apply the double	Lecture	Formative
		integrals over a	•	integrals over a		Assessment
		specified region		specified region		Test
		bounded by different		bounded by different		1000
		curves		curves		
		Working rule for				
		changing the order of				
		integration				
		Problems on changing				
		Froblems on changing				

		the order of integration				
	4	Introduction about triple integrals Evaluation of double integrals with constant limits Evaluation of double integrals with variable	4	Evaluate the double integrals and triple integrals	Lecture and group discussion	Slip Test
IV	Rota and	limits I Gamma functions				
1 V			4		Testeres	E
	1	Definition and existence of Beta and Gamma functions Properties of Gamma function Properties of Beta function Relation between Beta and Gamma functions	4	Explain the primary concepts of Beta and Gamma functions	Lecture with Illustration	Evaluation through discussions.
	2	Computation of Beta and Gamma functions Evaluation of integrals using properties of Gamma function Equivalent definitions of Beta function	4	To understand the theorems and problems based on Beta and Gamma functions	Lecture and group discussion	Evaluation through Assignment
	3	Evaluation of integrals using properties of Beta function Finding the value of standard definite integrals in terms of Beta and Gamma functions	4	To know aboutproperties of Beta function	Lecture with Illustration	Formative Assessment Test
	4	Duplication formula Deductions using Duplication formula	2	To understand Duplication formula	Lecture with Illustration	Slip Test
V	Fourier	1				
	1	Definition and basic properties of odd and even functions Introduction of Fourier series expansion Computation of Fourier coefficients	4	Explain the basic properties of odd and even functions	Lecture	Evaluation through discussions.
	2	Development of	4	To understand Fourier	Lecture	Formative
	1	L 1			1	

		Fourier series over an		series expansion and	with	Assessment
		interval of length 2π		half range Fourier series	Illustration	test
		Deduction of sum of		expansion		
		series from Fourier				
		series expansion				
		Introduction of half				
		range Fourier series				
		expansion				
	3	Development of half	3	To calculate Problems	Lecture	Slip Test
		range sine series over		based on half range	with	
		an interval of length π		sine, cosine series over	Illustration	
		Development of half		an interval of length π		
		range cosine series over				
		an interval of length π				
		Deduction of sum of				
		series from half range				
		Fourier series				
		expansion				
	4	Development of	4	To differentiatehalf	Lecture	Home
		Fourier series over an		range sine series over	with	Assignment
		arbitrary interval		an arbitrary interval	Illustration	-
		Development of half		And half range cosine		
		range sine series over		series over an arbitrary		
		an arbitrary interval		interval		
		Development of half				
		range cosine series				
		over an arbitrary				
		interval				
Cou	maa Inata	uctor Dr L. Jesmalar		HoD.Dr V M	A served The server	Man

Course Instructor: Dr.L.Jesmalar Course Instructor: Ms. V. Princy Kala & Ms. V.G. Michael Florance HoD:Dr. V. M. Arul Flower Mary HoD(SF): Mrs. J. Anne Mary Leema

Semester: IIAllied IIName of the Course: Vector Calculus and Differential Equations(for Physics and Chemistry)Subject code:MA2021

No. of hours per week	Credits	Total No. of hours	Marks
6	5	90	100

Objectives:

1. To introduce the concept of vector operators.

2. To impart the mathematical knowledge essential for solving problems in Physical Science.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	explain the physical meaning and properties of curl and divergence	PSO - 1	U
CO - 2	practice the computation of line integrals, surface integrals	PSO - 2	Ар
CO - 3	use computational tools to solve problems and applications of partial differential equations of first order.	PSO - 2	Ар
CO - 4	find the complementary function and particular integral of a differential equation by using appropriate methods.	PSO - 5	U
CO - 5	use Laplace transform and their inverse to solve differential equations.	PSO - 3	Ар

Total contact hours: 90 (Including lectures, assignments and tests)

Unit	Section	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation
Ι	Vecto	r Differentiation		I		
	1	Revision of dot and cross product of vectors, Definition	4	To recall the operations on vectors and understand its functions	Lecture with Illustration	Brainstormin g
		and theorems on differentiation of Vectors				
	2	Gradient of a scalar function and its properties, Problems based on Gradient	3	To study gradient in detail and apply its properties to solve problems	Lecture. Group discussion	Appreciative inquiry
	3	Equation of tangent plane and normal line for a single surface, Equation of	4	To understand the tangent plane and normal line and its various functions	Lecture, Small groups	Test

		tangent line and				
		normal plane for				
		the intersection of				
		two surfaces, Angle				
		between two				
		surfaces				
	4	Divergence of	4	To study in detail	Lecture,	Quiz
		vectors and its		divergence, curl,	Jigsaw	
		properties, Curl of		solenoidal and		
		vectors and its		irrotational vectors		
		properties,				
		Solenoidal and				
		irrotational vectors				
II	Vector I	ntegration	I.			
	1	Definition of line	3	To practice the	Lecture,	Slip test
		integrals and work		computation of line	problem	
		done by a force,		integrals	-	
		Parametric equation				
		of curves				
	2	Evaluation of line	5	To evaluate line	Inquiry	Assignment
		integrals over		integrals over different	based	C
		curves in a plane,		surface		
		Evaluation of line				
		integrals over				
		curves in a surface				
	3	Computation of	3	To compute work done	Lecture,	Formative
		work done by a		and understand	inductive	Assessment
		force, Projection of		projection	method	Test
		a surface over a		1 5		
		plane				
	4	Definition of	4	To practice the	Group	Seminar
		surface integrals,		computation of surface	Discussion	
		Evaluation of		integrals		
		surface integrals				
		over a plane				
III	Linear I	Differential equations		I	I	1
	1	Introduction of	4	To study the basics of	Lecture,	Multiple
		Linear Differential		linear differential	Debate	choice
		equations with		equations and to find the		questions
		constant		complementary function		1
		coefficients,		by using an appropriate		
		Formation of		method		
		auxillary equation				
		and finding the				
		complementary				
		function				

2Finding the particular integral for e ^{05.} Finding the particular integral for cos ax, sin ax4To find the particular integral of a differential equation by using an appropriate methodLecture with IllustrationTest3Finding the particular integral for cos ax, sin ax3To find the particular integral of a differential equation by using an appropriate methodLabSlip test3Finding the particular integral for e ^{ast} f(x), Finding the particular integral for x ⁿ f(x)3To find the particular integral of a differential equation by using an appropriate methodLabSlip test4Introduction of homogeneous linear equations, into linear differential equations with constant coefficientsTo study few methods to convert the homogeneous linear equations into differential equationsGroup DiscussionFormative Assessment Test1Introduction of homogeneous linear equations, conficients3To understand the basics and the formation of partial differential equations, equations, Formation of2Lecture with IllustrationQuiz1Introduction of partial differential equations, Formation of Partial differential equations, Formation of Partial differential3To understand the basics and the formation of partial differential equationsLecture with IllustrationQuiz	
for e ^{ax} . Finding the particular integral for cos ax, sin axequation by using an appropriate methodIllustration3Finding the particular integral for e ^{ax} f(x), Finding the particular integral for x ⁿ f(x)3To find the particular integral of a differential equation by using an appropriate methodLabSlip test4Introduction of homogeneous linear equations, conversion of homogeneous linear equations into linear differential equations with constant coefficientsTo study few methods to convert the homogeneous linear equations into differential equationsGroup DiscussionFormative Assessmed TestIVPartial Differential equations, constant coefficients3To understand the basics and the formation of partial differential equations, Formation ofQuiz	
Image: InterviewImage: Interview3Finding the particular integral for eaxf(x), Finding the particular integral for xnf(x)3To find the particular integral of a differential equation by using an appropriate methodLabSlip test4Introduction of homogeneous linear equations, Conversion of homogeneous linear equations into linear differential equations with constant coefficientsTo study few methods to convert the homogeneous linear equations differential equationsGroup DiscussionFormative Assessme TestIVPartial Differential equations, Formation of3To understand the basics and the formation of partial differential equationsQuiz	
3 Finding the particular integral for e ^{ax} f(x), Finding the particular integral for e ^{ax} f(x), Finding the particular integral for x ⁿ f(x) 3 To find the particular integral of a differential equation by using an appropriate method Slip test 4 Introduction of homogeneous 4 To study few methods to convert the homogeneous linear equations into linear differential equations Group Discussion Formative Assessment of the particular equations 1 Introduction of homogeneous 4 To study few methods to convert the homogeneous linear equations into differential equations Formative Assessment of the particular equations 1 Introduction of homogeneous 5 To understand the basics and the formation of partial differential equations 1 Introduction of Partial differential equations, Formation of partial differential equations 3 To understand the basics and the formation of partial differential equations	
particular integral integral of a differential for e ^{ax} f(x), Finding equation by using an integral for x ⁿ f(x) appropriate method 4 Introduction of 4 homogeneous convert the linear equations, homogeneous linear equations, equation sinto linear equations differential equations linear equations differential linear equations differential linear equations differential linear equations differential equations with constant constant coefficients 1 Introduction of 3 Partial differential equations, equations, partial differential	
for eaxf(x), Finding the particular integral for x ⁿ f(x)equation by using an appropriate methodequation by using an appropriate method4Introduction of homogeneous linear equations, Conversion of homogeneous linear equations linear equations linear equations linear equationsTo study few methods to convert the homogeneous linear equations into differential equationsGroup Discussion Assessmed TestImage: Value of the partial differential equations with constant coefficientsImage: Value of the partial differential equationsFormative Discussion Assessmed TestImage: Value of the partial differential equations, Partial differential equations, Formation ofTo understand the basics and the formation of partial differential equationsLecture with IllustrationQuiz	
integral for x ⁿ f(x) appropriate method Formative 4 Introduction of 4 To study few methods to convert the Group Formative homogeneous integral for x ⁿ f(x) convert the Discussion Assessment linear equations, homogeneous homogeneous linear equations into differential equations Test linear equations into linear differential equations differential equations Here is a set of the	
integral for x ⁿ f(x)Intervention4Introduction of homogeneous4To study few methods to convert the homogeneous linear equations into differential equationsGroup DiscussionFormative Assessment TestImage: Conversion of homogeneous linear equations into linear equations with constant coefficientsATo study few methods to convert the homogeneous linear equations into differential equationsTestIVPartial Differential equations equations, romationTo understand the basics and the formation of partial differential equationsLecture with IllustrationQuiz	
4Introduction of homogeneous4To study few methods to convert theGroupFormative AssessmentInear equations, Conversion of homogeneousIntear equations, conversion ofIntegeneousIntegeneousTestInear equations, into linear equationsIntegeneousIntegeneousIntegeneousIntegeneousInter equations into linear differential equations with constant coefficientsIntegeneousIntegeneousIntegeneousIVPartial Differential equations into linear differential equationsIntegeneousIntegeneousIntegeneousIntroduction of equations with constant coefficients3To understand the basics and the formation ofLecture with und the formation ofQuizIntroduction of equations, Formation ofIntegenetial equationsIntegeneti	
Image: Non-Section of linear equations, Converting linear equations, Conversion of homogeneous linear equations into homogeneous linear equations linear equations linear equations into linear differential equations with constant coefficientsConversion of linear equations linear equations linear equations with constant coefficientsDiscussion Assessment TestAssessment TestIVPartial Differential equationsImage: Conversion of linear equation of linear equations with constant coefficientsTo understand the basics and the formation of linear equations of linear equations equations into linear equations with constant coefficientsDiscussion Assessment TestIVPartial Differential equationsImage: Conversion of linear equation of linear equations equation of linear equation equation of linear equation of linear equation equation equation of linear equation equati	e
InearInearInearhomogeneousInearTestConversion ofImage equationsImage equationsImage equationsImage equationsImage equationsInearImage equationsImage equationsImage equationsImage equationsImage equationsInto linearImage equationsImage equationsImage equationsImage equationsImage equationsInto linearImage equationsImage equations	
Image: Conversion of homogeneousequations into differential equationslinear equationsdifferential equationsinto linear differential equations with constant coefficientsImage: Conversion of the term of te	
Image: Application of the systemImage: Application of the systemImag	
into linear differential equations with constant coefficientsinto linear differential equations with constant coefficientsinto linear differential equationsIVPartial Differential equationsImage: Comparison of the partial differential partial differential equations, Formation ofTo understand the basics and the formation of partial differential equationsLecture with Illustration	
differential equations with constant coefficientsImage: constant coefficientsImage: constant coefficientsIVPartial Differential equationsTo understand the basics and the formation of partial differential equations, Formation ofLecture quizQuizImage: constant constant coefficients3To understand the basics and the formation of partial differential equationsLecture with IllustrationQuiz	
equations with constant coefficientsequations with coefficientsequationsIVPartial Differential equationsTo understand the basics and the formation of partial differential equations, Formation ofGuiz	
IV Partial Differential equations 1 Introduction of Partial differential equations, Formation of 9 1 1 Introduction of Partial differential equations, equations, Formation of 1 Introduction of Partial differential equations, equations, equations, equations, equations	
IVPartial Differential equationsIIntroduction of Partial differential equations, Formation of3To understand the basics and the formation of partial differential equations, equationsLecture with IllustrationQuiz	
IVPartial Differential equations1Introduction of Partial differential equations, Formation of3To understand the basics and the formation of partial differential equationsLecture with IllustrationQuiz	
1Introduction of Partial differential equations, Formation of3To understand the basics and the formation of partial differential equationsLecture with IllustrationQuiz	
Partial differential equations, Formation ofand the formation of partial differentialwith IllustrationFormation ofequations	
equations,partial differentialIllustrationFormation ofequationsIllustration	
Formation of equations	
i artial differential	
equations by	
eliminating the	
unknown constants,	
2 Formation of 3 To study the methods of Lecture Test	
Partial differential formation and the and small	
equations by solution of partial groups	
eliminating the differential equations	
arbitrary functions,	
Methods of solving	
Partial differential	
equations	
3 Standard form of 3 To study about Discussion Test	
Lagrange'sLagrange's equation andequation, Generalthe methods to find its	
solution of solutions	
Lagrange's	
equation	
4 Solving Lagrange's 3 To use computational Lecture Brain	
equation by method tool to solve problems and storming	

		of grouping		and applications of partial differential equation of first order	Discussion	
	5	Solving Lagrange's equation by method of multipliers	3	To use computational tool to solve problems and applications of partial differential equation of first order	Lecture with Illustration	Test
V	Laplace	Transform				
	1	Definition of Laplace Transform, Properties of Laplace Transform	3	To know the basics and the properties of Laplace Transform	Lecture and Debate	Test
	2	Computation of Laplace Transform of standard functions, Problems on Laplace Transform	3	To solve problems on Laplace Transform	Lecture with Illustration	Formative Assessment test
	3	Definition of Inverse Laplace Transform, Properties of Inverse Laplace Transform	3	To know the basics and the properties of Inverse Laplace Transform	Lecture and Lab	Short test
	4	Computation of Inverse Laplace Transform of specific functions, Problems on Inverse Laplace Transform	3	To use the Inverse Laplace Transform to solve the differential equation	Lecture and small groups	Assignment
	5	Solving Linear Differential equations using Laplace Transform	3	To use Laplace transform to solve the differential equation	Lecture with Illustration	Quiz and Test

Course Instructor: Dr. K. Jeya Daisy

HoD:Dr. V. M. Arul Flower Mary

HoD(SF): Mrs. J. Anne Mary Leema

SemesterIIName of the Course: Quantitative Aptitude - II (NME)Course Code: MNM202

No. of hours per week	Credits	Total No. of hours	Marks
4	2	60	100

Objectives: 1.To develop the quantitative aptitude of the students 2.To solve problems needed for various competitive examinations.

Course Outcome

СО	Upon completion of this course the students will be ableto:	PSO addressed	CL
CO - 1	frame equations and solve problems involving ratios and fractions.	PSO - 2	Ар
CO - 2	calculate the area and compare the objects on the basis of their size and area.	PSO - 1	Ар
CO - 3	change the form of the number using logarithm and make tedious and confusing calculations simple.	PSO - 4	An
CO - 4	have sufficient knowledge about the basis of calculation.	PSO - 2	U, Ap
CO - 5	study the concept related to time, speed and distance.	PSO - 4	Ар

Total contact hours: 30 (Including lectures, assignments and tests)

Unit	Section	Topics	Lectu re hours	Learning outcomes	Pedagogy	Assessment/ evaluation
Ι	Problem	s on Numbers				
	1.	Problems on Numbers	3	To understand the basic concepts of numbers	Lecture thro google meet	Online Test
	2.	Framing and solving equations involving unknown numbers	3	To frame and solve equations	Lecture thro google meet	Online quiz, Assignment
II	Problem	s on Trains			-	
	1.	Problems on Trains	2	To study basic concepts	Lecture thro google meet	Online Test, Assignment
	2.	Time taken by a train to cover	2	To solve problems on time taken by a train to	Lecture thro google meet	Online Quiz

		<i>l</i> metres, <i>l</i> + <i>b</i> metres		cover <i>l</i> metres, <i>l</i> + <i>b</i> metres		
	3.	Relation between a train and stationary/moving body	2	To solve problems related to train and stationary/moving body	Lecture thro google meet	Formative Assessment online Test
III	Compou	und Interest			L	
	1.	Compound Interest	3	To recall the formulae of Compound interest	Lecture thro google meet	Online Test, Assignment
	2.	Interest compounded annually, half yearly and quarterly, different rates for different years	3	To employ the problems related interest compounded annually, half yearly and quarterly, different rates for different years	Lecture thro google meet	Formative Assessment online Test
IV	Logarit	hms			1	
	1.	Logarithms	2	To study the rules of Logarithms	Lecture thro google meet	Online Test
	2.	Properties of Logarithms	2	To solve problems by applyingthepropertiesof logarithms	Lecture thro google meet	Online Assignment
	3.	Common Logarithms	2	To solve problems of Common Logarithms	Lecture thro google meet and Group discussion	Online Quiz
V	Area				1	
	1.	Area - Results on Triangles- Pythagoras theorem, median, centroid	3	To learn the formulae and results	Lecture thro google meet	Online Quiz, Test
	2.	Area of a triangle and rectangle	3	To find Area of the given field	Lecture thro google meet	Formative Assessment online Test

Course Instructor: Dr. M.R. Angel Jebitha, Ms.J.C.Mahizha Course Instructor: Dr.C.Jenila

HoD: Dr. V. M. Arul Flower Mary HoD(SF): Mrs. J. Anne Mary Leema

Major Core V

Semester	: IV
Name of the Course	: Groups and Rings
Subject code	: MC2041

No. of hours per week	Credit	Total No. of hours	Marks
6	5	90	100

Objectives: 1.To introduce the concepts of Group theory and Ring theory

2. To gain more knowledge essential for higher studies in Abstract Algebra4.

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO – 1	recall the definitions of groups ,rings, functions and also examples of groups and rings	PSO - 1	R
CO – 2	explain the properties of groups, rings and different types of groups and rings	PSO - 1	U
CO – 3	develop proofs of results on Permutation groups ,Cyclic groups, Quotient group, Subgroups, subrings , quotient rings	PSO - 5	С
CO – 4	examine the properties of Ideals-Maximal and Prime ideals-Cosets-order of an element	PSO - 5	E
CO – 5	test the homomorphic and isomorphic properties of groups and rings	PSO - 4	An
CO – 6	develop the concepts of ordered integral domains and Unique Factorisation Domains	PSO - 5	E

Total contact hours: 90 (Including lectures, seminar and tests)

Unit	Section	Topics	Lecture	Learning outcomes	Pedagogy	Assessment/
			hours			evaluation
Ι	Group	DS.				
	1.	Definition and	4	To understand the	Lecture	Evaluation
		examples on		definition of groups	with	through test
		Groups			Illustration	
	2.	Definition and	3	To understand the	Lecture	Q&A
		examples on		definition permutation		
		Permutation Groups		groups		
	3.	Definition of cycle	3	To understand the	Lecture	Open
		and theorem based		definition of cycle and	with	Book
		on cycles		theorem based on cycles	Illustration	Assignment
	4.	Theorems on even	2	To understand and apply	Lecture	Quiz
		and odd		this theorem in various	with	
		permutations		problems	Illustration	

	5.	Definition	3	To understand the	Lecture	Group
		examples, theorems		definition and theorems	with	Discussion
		and problems of sub		of sub groups	Illustration	
		groups				
	6.	Theorems on cyclic	2	To learn the concepts of	Lecture	Q&A
		groups and		cyclic groups	with	
		problems based on			Illustration	
		cyclic groups				
II	Order of	f an element and Nori	nal Sub G	roups		
	1.	Definition and	2	To understand the	Lecture	Test
		Theorems on order		definition and theorems	with	
		of an Element		on order of an Element	Illustration	
	2.	Problems on order	2	To apply the concept of	Lecture	Open book
		of an element		order of an element in		assignment
				problems		
	3.	Definition of	3	To understand the	Lecture	Q&A
		Cosets and		definition of cosets and		
		problems on cosets		problems on cosets		
	4.	Lagrange's	3	To learn Lagrange's	Lecture	Formative
		Theorem, Euler's		Theorem, Euler's		Assessment
		Theorem, Fermats		Theorem, Fermats		Test
		theorem		theorem		
	5.	Normal subgroups -	2	To know the definition	Group	Q&A
		Definition and		of Normal subgroups	Discussion	
		Examples				
	6.	Problems and	2	To apply the Normal	Lecture	Slip Test
		theorems on		subgroups concept in	with	
		Normal Subgroups		problems	Illustration	
III	Isomorp			Γ	T	1
	1.	Definition,	4	To understand the	Lecture	Quiz
		theorems and		definition and theorems	with	
		Examples of		based on Isomorphism	Illustration	
		Isomorphism			_	
	2.	Cayley's Theorem	3	To learn the	Lecture	SipTest
		and Theorem on		Cayley'stheorem and		
		Automorphism and		understand the concept		
		generators		of Automorphism and		
				generators	-	
	3.	Definition of	2	To learn the definition	Lecture	Test
		Homomorphism		of Homomorphism and		
		and Examples		Examples	_	
	4.	Fundamental	3	To study the	Lecture	Q&A
		Theorem of		Fundamental Theorem		
		Homomorphism		of Homomorphism		
	5.	Problems on Kernel	3	To apply Kernel concept	Group	Brain
				in problems	Discussion	Storming

IV	Rings					
	1.	Definition, Elementary properties and examples of Rings	3	To learn the definition of rings	Lecture with Illustration	Quiz
	2.	Problems based on Isomorphism of Rings	3	To get the idea of Isomorphism of Rings	Lecture and group discussion	Test
	3.	Types of Rings and Theorems	2	To identify the Types of Rings	Lecture with Illustration	Test
	4.	Examples of Skewfieldsamd Theorems based on Skewfields	2	To apply Skewfields idea in problems	Lecture with Illustration	Formative Assessment Test
	5.	Definition and Theorems on integral Domains	1	To know about integral Domains	Lecture with Illustration	Assignment
	б.	Characteristic of a Ring	1	To interpret the Characteristic of a Ring	Lecture with Illustration	Quiz and Test
V	Sub Rin	Igs				
	1.	Definition and Examples of Sub Rings	2	To get the knowledge of subrings	Lecture with Illustration	Test
	2.	Problems and Theorems on Sub Rings	1	To develop the proof technique and solve problems.	Lecture with Illustration	Q&A
	3.	Definition, Theorems and Examples on ideals	3	To utilize the concept of ideals in examples	Lecture with Illustration	Open Book Assignment
	4.	Ordered integral Domains	3	To understand the Ordered integral Domains	Lecture with Illustration	Assignment
	5.	Maximal and Prime Ideals	2	To know about Maximal and Prime Ideals	Lecture with Illustration	Quiz and Test
	6.	Homomorphism of Rings	2	To learn the definition of Homomorphism of Rings	Lecture with Illustration	Assignment
	7.	Unique factorisation Domain	2	To understand and analyze about Unique factorisation Domain	Lecture with Illustration	Quiz and Test

Course Instructor(Aided): Dr.L.Jesmalar Course Instructor(SF): Ms.V. Princy Kala Leema

HOD :Dr. V. M. Arul Flower Mary HOD(SF) : Ms. J. Anne Mary

Semester	: IV
Name of the Course	: Analytical Geometry - 3 Dimensions
Subject code	: MC2042

No. of hours per week	Credits	Total No. of hours	Marks	
5	5	75	100	

Major Core VI

Objectives:

To gain deeper knowledge in three dimensional Analytical Geometry.
To develop creative thinking, innovation and synthesis of information

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO – 1	recall the basic definitions and concepts of planes and lines	PSO - 1	R
CO – 2	demonstrate the Projection of the line joining two points, Cosines of the line joining two points and will be able to solve problems	PSO - 3	Ар
CO – 3	analyze the characteristics of a cone and the condition for a plane to touch the quadric cone	PSO - 2	An
CO – 4	draw three dimensional surfaces from the given information	PSO - 4	An
CO – 5	discuss the characteristics and properties of 3 - dimensional objects like sphere,cubeetc	PSO - 1	U
CO – 6	develop the skill in 3 - dimensional geometry to gain mastery in related courses	PSO - 6	С

Total contact hours: 75 (Including lectures, assignments and tests)

Unit	Section	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation
Ι	Direction	n cosines of a line				
	1.	Introduction and definition of distance between points and angle between two lines.	2	To understand the concept of distance between points and angle between two lines	Lecture	Test
	2.	Definition and problems related to Projection on a line, Direction cosines of a line	3	To understand the projection on a line and direction cosines of a line	Lecture with illustration s	Group Discussion
	3.	Definition of	3	To analyze the	Lecture	Test

		direction ratios and projection of the line joining two points.		equations of two skew lines in a simplified form		
	4.	Definition and Theorems related to direction cosines of the line joining the points	2	Acquire the knowledge about direction cosines of the line joining the points	Lecture	Test
	5.	Definition and problems based on conditions for perpendicularity and parallelism.	2	To practice various problems related to conditions for perpendicularity and parallelism.	Lecture with group discussion	Group discussion
II	J	The Plane		I	1	
	1.	Definition and problems based on Equation of a plane in different forms ,Intercept form , normal form	3	To understand the concepts Equation of a plane in different forms	Lecture	Test
	2.	Definition and problems related to Angle between the planes ,The ratio in which the plane divides the line joining the points	3	To understand the definition of the ratio in which the plane divides the line joining the points	Lecture	Q&A
	3.	Definition and problems on a plane through the line of intersection of two given planes	3	To practice various problems related to plane through the line of intersection of two given planes	Lecture	Formative Assessment Test
	4.	Problems based on length of perpendicular, Planes bisecting the angle between two planes.	3	Acquire the knowledge about the planes bisecting the angle between two planes.	Lecture with illustration s	Test
III	J	The Straight Line		r		1
	1.	Definition and methods of finding	3	To understand the methods of finding	Lecture	Quiz

		straight line and a quadric cone andTangent plane		tangent plane and normal		
	2.	Problems related to the intersection of a	4	To practice various problems related to the	Lecture	Slip Test
	1.	Definitions and problems in the equation of a surface and Cone	2	To understand about equation of a surface	Lecture with illustration	Test
IV]]	The Cone				
	5.	Definition of Intersection of two spheres and tangent plane.	2	Acquire the knowledge about Intersection of two spheres and tangent plane.	Lecture with illustration	Formative Assessment Test
	4.	Problems related to Section of sphere by a plane	3	To practice various problems related to Section of sphere by a plane	Lecture	Assignment
	3.	The length of the tangent from the point to the sphere	2	To know about the length of the tangent from the point to the sphere	Lecture with illustration	Slip Test
	2.	Theorem and problems on determination of the centre and radius of a sphere	2	To determine thecentre and radius of a sphere	Lecture	Test
	1.	Introduction and Illustrations based on equation of the sphere in its general form	3	To understand the sphere in its general form	Lecture	Quiz
IV	The Sph	lines		two lines		
	4.	Problems based on Co-planarity of two	3	Acquire the knowledge about Co-planarity of	Lecture with ppt	Assignment
	3.	Definition and problems Angle between the lines, image of a line	3	To Know the concept of Angle between the lines	Lecture with group discussion	Brain storming
	2.	Problems based on the plane and the straight line	3	To compare the plane and the straight line	Lecture with illustration	Test
		equation of a line in different forms		equation of a line in different forms		

	and normal				
3.	Problems related to thecondition for a plane to touch the quadric cone and the angle between the lines in which a plane cuts the cone	3	Acquire the knowledge aboutthe condition for a plane to touch the quadric cone	Lecture	Assignment
4.	Problems related to the condition that the cone has three mutually perpendicular generators.	3	To know about the condition that the cone has three mutually perpendicular generators.	Lecture	Quiz

Course Instructor(Aided)::Dr.J.Befija Minnie Course Instructor(S.F):Dr. S. Kavitha

HOD:Dr. V. M. Arul Flower Mary HOD(S.F) :Ms. J.Anne Mary Leema

SEMESTER IV

Name of the Course : Applied Statistics (Allied)

Course Code : MA2041

No. of hours per week	Credit	Total No. of hours	Marks
5	5	75	100

Objectives: 1.To acquire the knowledge of correlation theory and testing hypothesis.

2. To solve research and application oriented problems.

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO – 1	identify and demonstrate appropriate sampling processes	PSO –2	Ар
CO – 2	recall the methods of classifying and analyzing data relative to single variable	PSO –4	R
CO - 3	describe the χ^2 distribution in statistics	PSO –3	U
CO - 4	distinguish between the practical purposes of a large and a small sample	PSO –1	An
CO - 5	understand that correlation coefficient is independent of the change of origin and scale	PSO –5	U

Total contact hours: 75 (Including lectures, assignments and tests)

Uni	Section	Topics	Lecture	Learning outcomes	Pedagogy	Assessment/			
t			hours			evaluation			
Ι	I Correlation								
	1	Definitions and	5	To Recall the	Lecture	Quiz			
		examples of correlation,		definitions of					
		Properties of correlation		correlation, Properties					
		coefficient, Problems		of correlation					
		based on correlation		coefficient					
	2	Definition of Rank	3	To analyzeRank	Lecture	Assignment			
		correlation and proving		correlation and to solve					
		Spearman's formula,		the problems.					
		Calculating Rank							

		correlation coefficient				
		for the given data				
	3	Definition and results based on regression, Problems on regression	2	To solve the problems on regression	Lecture	Test
	4	Equation of regression lines	1	Apply regression lines in real life problems	Lecture with group discussion	Test
	5	Angle between the regression lines.	1	To Learn the Angle between the regression lines.	Lecture	Assignment
II	Test of s	ignificance				1
	1	Introduction on test of significance, Sampling and its types, Definition on Sampling distribution and examples, Standard error for some sampling distributions	3	To solve problems related to test of significance	Lecture with group discussion	Test
	2	Testing of hypothesis and errors in testing of hypothesis, critical values for different levels of significance, Procedure for testing of a statistical hypothesis	3	To testing of hypothesis	Lecture	Quiz
	3	Explanation and Problems of test of significance for single proportions	3	To solve problems related to single proportions	Lecture	Formative Assessment
	4	Probable limits , Test of significance for difference of proportions	2	To solve problems related to Probable limits	Lecture	Test
	5	Problems on test of significance for difference of proportions	1	To solve problems related to difference proportions	Lecture with group discussion	Test
III	Test of s	ignificance for means				
	1	Test of significance for single mean if the standard deviation is	4	To Learn some methods to solve the Problems based on	Lecture	Test

		known, Problems based on confidence limits for population mean, Problems based on test of significance of means.		confidence limits for population mean and Problems based on test of significance of means.		
	2	Problems based on test of significance for difference of sample means, Test of significance for single standard deviation	2	To Learn some methods to solve the problems of test of significance for difference of sample means and single standard deviation	Lecture	Test
	3	Test of significance for equality of standard deviations of a normal population.	2	To learn normal population	Lecture	Test
	4	Problems based on test of significance for standard deviation	2	To test the significance for standard deviation	Lecture	Test
	5	Problems based on test of significance for correlation coefficient	3	To test the significance for correlation coefficient	Lecture	Test
IV	Test of s	ignificance for small samj	ples			
	1	Distinguish large and small samples, Test of significance based on t- distribution, Test for the difference between the mean of a sample and that of a population.	3	To test the significance based on t-distribution, and the difference between the mean of a sample and that of a population.	Lecture with group discussion	Quiz
	2	Test for the difference between the means of two samples, Confidence limits for population mean	2	To solve problems related Confidence limits	Lecture	Assignment
	3	Problems based on confidence limits for population mean,Test of significance based on F-test	2	To learn the test of significance based on F-test	Lecture	Assignment
	4	Problems on test of significance based on F-test.	2	To solve problems on test of significance based on F-test.	Lecture	Formative Assessment

	5	Test of significance of an observed sample correlation, Problems on test of significance of an observed sample correlation.	2	To solve problems related to observed sample correlation.	Lecture	Assignment
V	Test bas	ed on χ^2 -distribution				
	1	Introduction on test based on χ^2 - distribution , χ^2 –test for population variance	3	To Solve the problems related to χ^2 –test for population variance	Lecture	Quiz
	2	χ^2 -test to test the goodness of fit	2	To test the goodness of fit for χ^2 –test.	Lecture	Test
	3	Result on χ^2 –test to test the goodness of fit.	2	To learn the Result on χ^2 -test to test the goodness of fit.	Lecture	Formative Assessment
	4	Fit a Poisson distribution for the given data and to test the goodness of fit.	3	Toanalyze a Poisson distribution.	Lecture	Test
	5	Theorem based on the test for independence of attributes, Yate's Correction.	2	To solve the Problems based on independence of attributes.	Lecture	Assignment

Course Instructor (Aided): S. Antin Mary

HOD(Aided):Dr. V. M. Arul Flower

MaryCourse Instructor(S.F): Dr. C. Jenila

HOD(S.F) :Ms. J.Anne Mary Leema

Semester V Major Core VII- Linear Algebra Course Code: MC2051

No. of hours per week	Credits	Total No. of hours	Marks			
6	5	90	100			

Objectives:

1. To introduce the algebraic system of Vector Spaces, inner product spaces.

2. To use the related study in various physical applications.

		Course Outcomes	
CO	upon completion of this course,	PSO addressed	CL
	the students will be able to:		
CO-1	recall and define Groups, Fields, and their properties	PSO - 1	R

CO-2	cite examples of vector spaces, subspaces, and linear transformations	PSO - 1	U
CO-3	determine the concepts of linear independence, linear dependence, basis, and the dimension of vector spaces	PSO - 1	U
CO-4	correlate rank and nullity, Linear transformation, and matrix of a Linear transformation	PSO - 2	Ар
CO-5	examine whether a given space is an inner product space and the orthonormality of sets	PSO - 3	Ар

Total contact hours: 90 (Including lectures, assignments, quizzes, and tests)

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Vector s	paces				
	1.	Vector spaces - Definition	4	To understand Vector spaces and their Definition	Lecture Illustration	Evaluation through slip test
	2.	Vector spaces - Examples	4	To give examples of vector spaces on different fields.	Lecture Illustration	quiz, test
	3.	Subspaces	5	To prove many theorems related to subspaces and derive some examples.	Lecture Illustration	Evaluation through slip test
	4.	Linear transformation.	5	To determine linear transformations and study their properties and types.	Lecture Illustration	Class test
II	The span	n of a Set				
	1	Span of a Set	3	To understand about Span of a Set	Lecture Illustration	Home Assignment
	2	Linear Independence	4	To identify the Linear Independence and dependence of a set	Lecture Illustration	Evaluation through slip test
	3	Basis and Dimension	3	To calculate the Basis and Dimension of a given set	Lecture Illustration	Formative Assessment
	4	Rank and Nullity	4	To find the rank and nullity of a given set	Lecture Illustration	Online Quiz, Test
	5	Matrixof a Linear Transformation	4	To calculate the Matrixof a Linear Transformation	Lecture Illustration	Home Assignment
III	Cayley-l	Hamilton Theorem				

	1	Characteristic Equation	4	To understand basic concepts ofCharacteristic Equation	Lecture Illustration	Slip Test		
	2	Cayley-Hamilton Theorem	5	To analyze the Cayley-Hamilton Theorem for matrix	Lecture Illustration	Online quiz		
	3	Eigenvalues and Eigen vectors	5	To determine the Eigen values and Eigenvectors of the matrix	Lecture Illustration	Online Assignment		
	4	Properties of Eigenvalues.	4	To study the Properties of Eigenvalues.	Lecture Illustration	SlipTest		
IV	Inner P	roduct Spaces						
	1	Inner Product Spaces - Definition	4	To understand the definition of inner product space	Lecture Illustration	Slip Test		
	2	Inner Product Spaces - examples	4	To verify examples of Inner Product Spaces	Lecture Illustration	Home Assignment		
	3	Orthogonality	5	To study theorthogonalitycondit ion and related theorems	Lecture Illustration	quiz		
	4	Orthogonal complement	5	To study the Orthogonal complement and related theorems	Lecture Illustration	Formative Test, Online Quiz		
V	Bilinear forms							
	1	Bilinear forms	3	To understand the Bilinear forms	Lecture Illustration	Class Test		
	2	Quadratic forms	3	To understand the Quadratic forms	Lecture Illustration	Formative assessment		
	3	Reduction of a quadratic form to the diagonal form	3	To derive the Reduction of a quadratic form to the diagonal form	Lecture Illustration	Online Quiz		
	4	Partially ordered set- Lattices	3	To learn the Partially ordered set-Lattices	Lecture Illustration	Online Assignment		
	5	Distributive Lattices- Modular Lattices-	3	To find the distributive Lattices- Modular Lattices	LectureIllustr ation	Class test		

6	Boolean Algebra.	3	To learn the Boolean	Lecture	Slip test
			Algebra	Illustration	

Course Instructor: Ms. J.C. Mahizha
Course Instructor: Ms.Anne Mary Leema

HoD: Dr.T. Sheeba Helen HoD(SF): Dr.S.Kavitha

Semester VI

Major Core X- Complex AnalysisCourse Code: MC2061

No. of hours per week	Credits	Total No. of hours	Marks
6	5	90	100

Objectives: 1. To introduce the basic concepts of differentiation and integration of Complex functions.

2. To apply the related concepts in higher studies.

CO	Upon completion of this course the students	PSO	CL
	will be able to:	addressed	
CO - 1	understand the geometric representation of mappings	PSO - 1	U
CO - 2	use differentiation rules to compute derivatives and express complex- differentiable functions as power series	PSO - 4	E
CO - 3	compute line integrals by using Cauchy's integral theorem and formula	PSO - 3	E
CO - 4	identify the isolated singularities of a function and determine whether they are removable, poles or essential	PSO – 1	U
CO - 5	evaluate definite integrals by using residues theorem	PSO – 5	С

Unit	Module	Topics	Lecture hours	Learningoutcomes	Pedagogy	Assessment/ evaluation
------	--------	--------	------------------	------------------	----------	---------------------------

Ι	1	Differentiability –	3	To analyse the basic	Lecture	Assignment
		definitions and		properties of		
		theorems		differentiability		
	2	Cauchy Riemann	7	To get necessary &	Lecture	Formative
		equations –		sufficient condition for		Assessment
		theorems and		differentiability		
		examples,				
		Alternate forms of				
		C.R equations –				
		theorems and				

		problems				
	3	Analytic	5	To discuss some properties	Lecture	Test
		functions-		of an analytic function		
		definition				
		and				
		problems				
	4	Harmonic	7	To find an analytic	Lecture	Assignment
		functions –		functions	with group	_
		definitions,			discussion	
		theorems and				
		problems				
II	1	Bilinear	7	To determine the image of	Lecture with	Quiz
		transformations –		given region under bilinear	PPT	
		elementary		transformation		
		transformation and				
		cross ratio				
	2	Fixed Points of	2	To obtain fixed points	Problem	Assignment
	-	Bilinear	2	under varies bilinear	solving	1 issignment
		Transformation		transformation	C	
		Tansformation		transformation		
	3	Mapping by	3	To explain the properties of	Lecture with	Slip Test
		Elementary		elementary functions	PPT	
		Functions- $w =$				
		$z^{2}, w = z^{n}, w =$				
		$e^z, w =$				
		$\sin z, w =$				
		$\cos z, w = \cosh z$				
III	1	Definite integral –	4	To evaluate definite	Lecture	Assignment
	-	definitions,	-	integral		1 10018-1110-110
		theorems and				
		examples				
	2	Cauchy's	5	To prove Cauchy's	Lecture	Test
	-	theorem –	5	theorems	Lecture	rest
		definition and				
		theorems				
	3	Cauchy's	5	To evaluate integrals	Lecture with	Test
	5	-	5	10 evaluate integrais		1051
		integral formula –			group discussion	
					uiscussion	
		theorems and				
		problems				

IV	1	Taylor's series- Taylor's theorem and problems	5	To expand the given function as Taylor's series	Lecture	Assignment
	2	Laurent's Series – Laurent's theorem and problems	5	To expand the given function as Laurent's series	Lecture	Formative Assessment
	3	Zeros of analytic functions – definition and problems	3	To determine the zeros of an analytic functions	Lecture with group discussion	Assignment
	4	Singularities – definitions and examples	1	To find the singularity of a given function	Lecture with group discussion	Slip Test
V	1	Residues – definition, lemmas and problems	5	To find the residue of a given function	Lecture	Test
	2	Cauchy's residue theorem – theorems and examples	3	To applyCauchy's residue theorem by evaluating the integrals.	Discussion	Test
	3	Evaluation of definite integrals – method and problems	5	To evaluate the definite integrals by using the given method.	Lecture	Formative Assessment

Course Instructor (Aided): Dr. M. K. Angel Jebitha Course Instructor (S.F): Ms. V. Princy Kala

HoD(Aided): Dr. T. Sheeba Helen HoD(S.F): Dr. S. Kavitha

Name of the Course : Mechanics Subject code : MC2062

No. of hours per week	Credits	Total No. of hours	Marks
6	5	90	100

Objectives:

- 3. To visualize the application of Mathematics in Physical Sciences.
- 4. To develop the capacity to predict the effects of force and motion.

СО	Upon completion of this course the students	PSO	CL
	will be able to:	addressed	

CO - 1	calculate the reactions necessary to ensure static equilibrium	PSO - 2	U
CO - 2	apply the principles of static equilibrium to particles and rigid bodies	PSO - 4	Ар
CO - 3	understand the ways of distributing loads	PSO - 5	С
CO - 4	identify internal forces and moments of a rigid body	PSO - 3	Ар
CO - 5	apply the basic principles of projectiles into real world problems	PSO - 2	Ар
CO - 6	classify the laws of friction	PSO - 4	An

Unit	Section	Topics	Lecture	Learning outcomes	Pedagogy	Assessment/evaluation
Ι	Force	s acting at a point, Parallel	hours	d moments		
1	5.	Forces Acting at a Point:	4	To apply the	Lecture	Evaluation through test
	5.	Resultant and		principles of static	with PPT	Evaluation infough test
		Components - Sample		equilibrium to	Illustration	
		cases of finding the		particles and rigid	inustrution	
		resultant -Analytical		bodies.		
		expression for the				
		resultant of two forces				
		acting at a point –				
		Triangle forces –				
		Perperndicular				
		Triangular forces –				
		Converse of the				
		Trigangle of Forces- The				
		Polygon of Forces,				
		Lami's Theorem,				
		Problems based on				
		Lami's Theorem				
	6.	Resultant of two like	3	To distinguish the	Lecture	Evaluation through test
		parallel forces, two		like and unlike	with	
		unlike and unequal		parallel forces and	Illustration	
		parallel forces, Resultant		determine their		
		of number of parallel		resultant and apply		
		forces, equilibrium of		those principles to		
		three coplanar parallel forces		particles and rigid bodies.		
	7.	Moment of a force,	4	To understand the	Lecture	Test
	7.	Geometrical		theorems of moments.	with	1050
		representation, Varignon's		theorems of moments.	Illustration	
		theorem of moments			mushunon	
	8.	Generalised theorem of	4	To Calculate the	Discussion	Quiz and Test
		moments, Problems		algebraic sum of the	with	
		based on Varignon's		moments of the forces	Illustration	

		the oppose of the opposed of		of a mail 1 - 1		
		theorem of moments,		of a rigid body.		
		Generalised theorem of				
		moments				
II		, Coplanar Forces				
	6.	Couples – Equilibrium of	4	To identify couples	Lecture	Test
		two couples –		and coplanar forces	with PPT	
		Representation of a		and find their		
		couple by a vector –		resultant.		
		Resultant of coplanar				
		couples – Resultant of				
		couple and a force –				
		Problems based on				
		Couples, Introduction				
		and reduction of any				
		number of coplanar				
		forces, Analytical proof.				
	7.	Conditions for forces to	3	To construct a couple	Lecture	Test
		reduce a single force or		or a single force from		
		couple, Change of the		the given coplanar		
		base point & Equation to		forces.		
		the line of action of the				
		resultant				
	8.	Problems based on	2	To identify the	Lecture	Formative Assessment
		reduction of number of		coplanar forces and		Test
		coplanar forces		find their resultant.		
	9.	Problems based on forces	3	To construct a couple	Group	Test
		to reduce a single force		or a single force from	Discussion	
		or couple		the given coplanar		
				forces and solve		
				problems.		
	10.	Problems based on	3	To calculate the	Group	Test
		Equation to the line of	-	algebraic sum of the	Discussion	
		action of the resultant		moments of the forces	Discussion	
				of a rigid body.		
III	Friction	<u> </u>		. <u></u>	1	
_	5.	Introduction, Statical,	4	To classify the laws	Lecture	Quiz
	5.	Dynamical, Limiting	•	of friction and	with PPT	X ****
		friction and Laws of		analyze the problems	Illustration	
		friction, Coefficient of		involving frictional	mastration	
		friction, Angle of		forces.		
		friction, Cone of friction				
	6.	Equilibrium of a particle	3	To understand the	Lecture	Test
	0.	on a rough inclined	5	principles of friction	with	1000
		plane, Equilibrium of a		to particles and rigid	Illustration	
				bodies.	musuation	
		body on a rough inclined		boules.		
		plane under a force				
		parallel to the plane,				
		Equilibrium of a body on				
		a rough inclined plane				
	1	under any force.				

	7.	Problems based on Coefficient of friction, angle of friction	4	To apply the principles of friction to particles and rigid bodies.	Lecture	Test
	8.	Problems based on Equilibrium of a particle on a rough inclined plane and equilibrium of a body on a rough inclined plane under a force parallel to the plane	4	To identify the principles and solve problems.	Group Discussion	Formative Assessment Test
IV	Project	iles			•	
	5.	Introduction, Definitions, fundamental principles, Path of a projectile, Characteristics of the motion of a projectile	3	To understand the motion of projectile in various directions.	Lecture with PPT Illustration	Quiz
	6.	Path of a projectile at a certain height above the ground, Problems based on Path of a projectile, Problems based on Characteristics of the motion of a projectile	4	To understand the path of a projectile in various directions and apply the principles into real world problems.	Lecture and group discussion	Test
	7.	Maximum horizontal range, Two possible directions of projection, Problems based on maximum horizontal range and Two possible directions of projection	4	To understand the range and various directions of projectile and apply the principles into real world problems.	Lecture with Illustration	Test
	8.	Velocity of the projectile, Velocity of the projectile falling freely from the directrix, Problems based on Velocity of the projectile	4	To understand the velocity of a projectile and apply the principles into real world problems.	Lecture with Illustration	Test
V	Motion	under the action of central	forces			•
	5.	Motion under the action of central forces – Introduction– Velocity and Acceleration in Polar Coordinates	4	To understand velocity and acceleration in polar coordinates and solve real life problems.	Lecture with PPT Illustration	Test
	6.	Equation of Motion in Polar Coordinates – Note on the equiangular spiral	4	To understand Motion in Polar Coordinates and practice problems related to it.	Lecture with Illustration	Formative Assessment test

	Motion under a central force.				
7.	Differential Equation of central orbits – Perpendicular from the pole on the tangent – Pedal equation of the central orbit – Pedal equation of some of the well-known curves –	4	To calculate Pedal equation of some of the well-known curves.	Lecture with Illustration	Assignment
8.	Velocities in a central orbit – Two – fold problems in central orbits.	3	To understand the two types of problems that arise in connection with central orbits.	Lecture with PPT Illustration	Assignment&Quiz

Course Instructor (Aided): Dr. V. Sujin Flower Course Instructor (S.F): Dr. S. Kavitha

HoD(Aided): Dr. T. Sheeba Helen HoD(S.F): Dr. S. Kavitha

Semester VI Major Core XII- Number Theory Course Code: MC2063

No. of hours per week	Credits	Total No. of hours	Marks	
5	4	75	100	

Objectives: 1. To introduce the fundamental principles and concepts in Number Theory.

2. To apply these principles in other branches of Mathematics.

СО	Uponcompletionwill be able to:	on of	this	course	the	students	PSO addressed	CL	
CO - 1	express the concepts an	express the concepts and results of divisibility of integers effectively							
CO - 2	construct mathematica statements	l proofs of	theorems	and find cou	nter examples	for false	PSO - 2	Ар	

CO - 3	collect and use numerical data to form conjectures about the integers	PSO - 5	Ap
CO - 4	understand the logic and methods behind the major proofs in Number Theory	PSO - 4	An
CO - 5	solve challenging problems related to Chinese remainder theorem effectively	PSO - 3	E
CO - 6	build up the basic theory of the integers from a list of axioms	PSO - 1	U

Total contact hours: 75 (Including lectures, assignments and tests)

i	Section	Topics	Lectu	Learning outcomes	Pedagogy	Assessment/ev
			re			aluation
			hours			
	Divisib	oility Theory in the Integers				
	1	Preliminaries –	3	To understand the primary	Lecture with	Evaluation
		Numbers, integers,		concepts of Numbers,	Illustration	through
		Divisors and Divisibility		integers, Divisors and their		appreciative
		Theory in the Integers		origin and Divisibility Theory in the Integers		inquiry
	2	The Division Algorithm	3	To identify the divisors,	Lecture with	Evaluation
	-	theorem and its	U	quotient and the way of	illustration	through quizzes
		applications		expressions	musuuton	and discussions.
		11		1		
	3	The greatest common	3	To understand GCD and	Lecture with	Slip Test
		divisor and least		LCM of numbers and the	Illustration	
		common multiple		relation between them		
	4	Euclid's lemma and	3	To express Euclid's lemma	Problem	Quiz and Test
		Euclidean Algorithm.		and Euclidean Algorithm	solving	
	Diophar	tine Equation		and solve problems		
	<u>1</u>		3	To know about linear	Lecture with	Evaluation
	-	The Diophantine Equation $ax + by = c$	C	equations with two or more	illustration	through
		Equation $ax + by = c$		unknowns		discussions.
	2	Primes and their	3	To understand about	Problem	Evaluation
		Distribution.		Primes and their	solving	through
				Distribution.		appreciative
	2				T	inquiry
	3	The fundamental	3	To express every number	Lecture	Formative
		theorem of arithmetic		as a product of primes		Assessment Test
_	4	The Sieve of	3	To understand the Sieve of	Group	Formative
	I	Eratosthenes	5	Eratosthenes	Discussion	Assessment
						Test
	Theory o	f Congruences		·	·	· · · · · · · · · · · · · · · · · · ·
	1		3	To explain the primary	Lecture with	Evaluation
		Theory of Congruences		concepts of congruences	Illustration	through
						appreciative
			2	The second support on 1 of 1 1	Elines 1 Cl	inquiry
	2	Pasia proparties of	3	To understand the basic	Flipped Class	Evaluation
		Basic properties of		properties of congruence		through quizzes

	congruence				and discussions.
3	Linear congruences and the Chinese remainder theorem.	3	To construct Chinese remainder theorem	Lecture with Illustration	Slip Test
4	Problems based on Chinese remainder theorem.	3	To solve problems related to Chinese remainder theorem	Discussion with Illustration	Quiz and Test
Pseudop	rimes		•		
1	Fermat's Little theorem and Pseudoprimes	2	To construct Fermat's Little Theorem and pseudoprimes	Lecture with PPT Illustration	Evaluation through discussions.
2	Absolute pseudoprimes	3	To identify absolute pseudo primes	Flipped Class	Evaluation through appreciative inquiry
3	Wilsons theorem	3	To construct Wilson's Theorem	Lecture with Illustration	Formative Assessment Test
4	Quadratic Congruence.	3	To understand quadratic congruence.	Group Discussion	Slip Test
Number	Theoretic Functions				
1	Number Theoretic Functions	3	To understand the primary concepts of Number Theoretic Functions	Lecture with Illustration	Evaluation through discussions.
2	The sum and number of divisors	3	To find the sum of divisors and number of divisors	Lecture and group discussion	Evaluation through Assignment
3	The Mobius Inversion formula.	3	To construct Mobius Inversion formula	Flipped class	Formative Assessment Test
4	The greatest integer function.	3	To construct the greatest integer function	Lecture with Illustration	Slip Test

Course Instructor: Dr. S.Sujitha Course Instructor: Ms. Y.A. Shiny

HoD:Dr. T.Sheeba Helen HoD(SF): Dr.S.Kavitha

Semester - VI

Name of the Course: Major Core XIII- Linear Programming Subject code: MC 2064

No. of hours per week	Credit	Total No. of hours	Marks
5	5	75	100

Objectives: 1.Tosolve reallife problems with the use of LPP problems.

2.To learn optimization techniques.

•

СО	Upon completion of this course the students will be able to:	PSOs addressed	CL
CO - 1	understand the origin and development of Operations Research	PSO - 1	U
CO - 2	explain what is an LPP	PSO - 1	U
CO - 3	define how to formulate an LPP with linear constraints	PSO - 1	R
CO - 4	maximize the profit, minimize the cost, minimize the time in transportation problem, Travelling salesman problem, Assignment problem	PSO - 3	Ap
CO - 5	identify a problem in your locality, formulate it as an LPP and solve	PSO - 4	С

Unit I	Section	Topics	Lectur e hours	Learning Outcomes	Pedagogy	Assessment/evalu ation
	1	Formulation of LPP, Mathematical Formulation of LPP, Solution of LPP	3	To write the standard form of LPP and to find solutions	Lecture with examples	Lecture and discussions
	2	Graphical method	4	To solve LPP in graphical method	Lecture	Lecture with illustrations
	3	Algorithm for Simplex method	1	To learn about Algorithm for Simplex method	Lecture with Illustration	Lecture
	4	Simplex method problems	3	To solve LPP by simplex method		Evaluation
	5	Algorithm for Big-M Method, Big-M Method problems	4	To solve LPP by Big-M method	Discussion with Illustration	Lecture and discussions
Unit II	1	Two phase method - Phase I : Solving auxiliary LPP using Simplex method	4	To solve LPP by Two Phase method	Lecture with PPT	Lecture
	2	Phase II : finding optimal basic feasible solution	3	To find basic feasible solution by Two Phase method- Phase II	Lecture with PPT	Evaluation through Test
	3	Duality in L.P.P, Primal, Formation of dual L.P.P, Matrix form of primal and its dual, Fundamental theorem of duality	3	To learn about duality in LPP	Lecture	Lecture with illustrations
	4	Dual Simplex Algorithm, Dual simplex problems	3	To solve LPP by dual simplex method	Group Discussion	Lecture and problem solving
	5	Degeneracyand cyclinginL.P.P.	2	To learn about Degeneracyand cyclinginL.P.P.	Lecture	Evaluation through discussions
Unit III	1	Mathematical formulation of Transportation Problems, Dual of a Transportation Problem	2	To know about Transportation problems	Lecture with Illustration	Lecture
	2	Solution of a Transportation Problem, North-West corner rule	2	To solve Transportation Problems by North-West corner rule	Lecture	Formative Assessment Test
	3	Row minima method, Column minima method, Least Cost Method	3	To solve Transportation Problems by Row minima method,	Group Discussion	Slip Test

				Column minima method, Least cost method		
	4	Vogel'sApproximation Method	3	To solve Transportation Problems by Vogel Approximation Method	Lecture with PPT Illustration	Evaluation through discussions
	5	Degeneracy inTransportation Problems	3	To learn about Degeneracyin TP	Lecture and group discussion	Evaluation through Assignment
Unit IV	1	Assignment Problems, Mathematicalformulatio n, Solution to Assignment Problems	2	To learn the applications ofAssignment Problems and to Solve the Assignment Problems	Lecture with Illustration	Lecture
	2	Hungarian Algorithm for solving Assignment Problem	3	To Solve Assignment Problems by Hungarian method	Lecture	Home Assignment
	3	Travelling Salesman Problem	2	To Solve the Travelling Salesman Problems	Lecture with PPT Illustration	Evaluation through discussions
Unit V	1	Introduction to SequencingofJobs	2	To learn about Introduction to SequencingofJobs	Lecture with Illustration	Lecture with illustrations
	2	Processingnjobsintwom achines	2	To know about Processingnjobsint womachines	Lecture with Illustration	Slip Test
	3	Processingnjobsinmmac hines	3	To know about Processingnjobsin mmachines	Lecture	Home Assignment
	4	Processingtwo jobsinmmachines	3	To know about Processingtwo jobsinmmachines	Lecture	Home Assignment

Elective II: (a) Astronomy Course Code: MC2065

No. of hours per week	Credits	Total No. of hours	Marks	
6	4	90	100	

Objectives: 1. To introduce space science and to familiarize the important features of the planets, the sun, the moon, and the stellar universe.

2. To predict lunar and solar eclipses and study seasonal changes.

Course Outcome

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO – 1	define the spherical trigonometry of the celestial sphere	PSO - 1	U
CO – 2	discuss Kepler's laws	PSO - 1	U
CO – 3	calculate the motion of two particles relative to the common mass Centre	PSO - 2	Ар
CO – 4	interpret latitude and longitude and apply this to find the latitude and longitude of a particular place	PSO - 4	Е
CO – 5	distinguish between Geometric Parallax and Horizontal Parallax	PSO - 4	An

Total contact hours: 90 (Including lectures, assignments, quiz, and tests)

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Celestial	sphere				
	7.	Spherical trigonometry (only the four formulae) - Celestial sphere	4	To understand the four formulae and related termsabout Celestial sphere.	Lecture Illustration	Evaluation through slip test
	8.	Four systems of coordinates	3	To represent the different systems of co- ordinates in the same figure and conversion of co-ordinates and to find the relation between right ascension and longitude of the Sun.	Lecture Illustration	quiz, test
	9.	Diurnal motion - Sidereal Time	3	To trace the changes in the coordinates of the sun in the course of year. To find the longitude of the Sun	Lecture Illustration	Evaluation through slip test

				on any day and Latitude of a place.		
	10.	Hour angle and Azimuth at rising	3	To understand the R.A and Declination of a body, Hour angle of a body at rising and setting and duration of day time Azimuth of a star	Illustration	Class test
	11.	Morning and Evening stars	3	To identify Morning stars, Evening stars	Lecture Illustration	Assignment
	12.	Circumpolar stars	2	To understand the Circumpolar stars and to find the condition that a star is circumpolar	Lecture Illustration	HomeAssign ment
II	The Ear	th				
	1	The Earth - Zones of the earth	3	To understand about different zones of the Earth	Lecture Illustration	Home Assignment
	2	Perpetual Day and Perpetual night	4	To calculate the durations of day and night during the year at different stations	Lecture Illustration	Evaluation through slip test
	3	Terrestrial latitude and longitude	3	To identify the Terrestrial latitude and longitude	LectureIllustr ation	Formative Assessment
	4	Dip of Horizon	4	To construct problems based on dip of Horizon	Lecture Illustration	Online Quiz, Test
	5	Twilight, Duration of Twilight, Twilight throughout the night, Shortest Twilight.	4	To calculate the duration of Shortest Twilight	LectureIllustr ation	Home Assignment
III	Geocent	ric parallax				
	1	Geocentric parallax - Parallax - Effects of Geocentric parallax	3	To understand basic concepts ofParallaxand Geocentric parallax	Lecture Illustration	SlipTest
	2	Changes in R.A and Declination of a body due to Geocentric Parallax	4	To analyze the Changes in R.A and Declination of a body due to Geocentric Parallax	Lecture Illustration	Online quiz
	3	Angular diameter – Equatorial horizontal	4	To determine the Angular diameter and	Lecture Illustration	Online Assignment

		Parallax		Equatorial horizontal Parallax		
	4	Heliocentric Parallax – Effect of Heliocentric Parallax	3	To analysethe Heliocentric Parallax and Effect of Heliocentric Parallax	Lecture Illustration	SlipTest
	5	To find the effect of Parallax on the Longitude and Latitude of a Star - Parsec	4	To find the solution of the effect of Parallax on the Longitude and Latitude of a Star and Parsec	Lecture Illustration	Online Assignment
IV	Kepler's	s laws				
	1	Kepler's laws - Eccentricity of Earth's orbit –	3	To understand the Kepler's laws and the Eccentricity of Earth's orbit	LectureIllustr ation	SlipTest
	2	Verification of Kepler's Laws (1) and (2) - Newton's deductions from Kepler's laws	3	To verify Kepler's Laws and understand Newton's deductions from Kepler's laws	Lecture Illustration	Home Assignment
	3	To derive Kepler's Third Law from Newton's law of Gravitation – To find the mass of a planet	4	To understand theKepler's third law which is derived from Newton's law of gravitation	Lecture Illustration	quiz
	4	To fix the position of a planet in its elliptic orbit – Geocentric and Heliocentric latitudes and longitudes	4	To study the position of a planet in its elliptic orbit, Geocentric and Heliocentric latitudes and longitudes	Lecture Illustration	Formative Test, Online Quiz
	5	To prove that the Heliocentric longitude of the Earth and Geocentric longitude of the Sun differ by 180°	4	To determine the solutions of Heliocentric longitude of the Earth and Geocentric longitude of the Sun differ by 180°	Lecture Illustration	Slip Test
V	Two Bo	dy Problem		1		
	1	Two Body Problem - Introduction – Newton's Fundamental equation of Motion	4	To understand the Two Body Problem and Newton's Fundamental equation of Motion	Lecture Illustration	ClassTest
	2	Motion of one particle	3	To calculate the	LectureIllustr	Formative

	relative to another		Motion of one particle relative to another	ation	assessment
3	The motion of the common center of mass	3	To understand the motion of the common center of mass	LectureIllustr ation	Online Quiz
4	The motion of two particles relative to the common mass center	4	To learn the motion of two particles relative to the common mass center	LectureIllustr ation	Online Assignment
5	The motion of a planet with respect to the Sun	4	To find the motion of a planet with respect to the Sun	Lecture thro google meet	Class test

Course Instructor: Ms. J.C.Mahizha Course Instructor: Ms. Monisha HOD:Dr.T. Sheeba Helen HOD:Dr. S.Kavitha