Holy Cross College (Autonomous), Nagercoil

Kanyakumari District, Tamil Nadu. Accredited with A⁺ by NAAC - IV cycle – CGPA 3.35

Affiliated to Manonmaniam Sundaranar University, Tirunelveli

DEPARTMENT OF PHYSICS

TEACHING PLAN

EVEN SEMESTER 2024 - 2025

DEPARTMENT OF PHYSICS

Vision

Envisions training students for quality Physics education and holistic development empowered to meet challenges and embark on luxuriant careers.

Mission

- To produce competent graduates infused with professionalism, ethical values and social responsibility.
- > To prepare students to accentuate learning for life.
- > To foster a research environment, to keep up with global development in Science.
- > To evolve strategies for the growth of the department towards excellence.

Programme Educational Objectives (PEOs)

PEOs	Upon completion of B.A/B.Sc. degree programme, the	Mission
	graduates will be able to	addressed
PEO 1	apply appropriate theory and scientific knowledge to	M1& M2
	participate in activities that support humanity and	
	economic development nationally and globally,	
	developing as leaders in their fields of expertise.	
PEO 2	inculcate practical knowledge for developing professional	M2, M3, M4 &
	empowerment and entrepreneurship and societal services.	M5
PEO 3	pursue lifelong learning and continuous improvement of	M3, M4, M5 &
	the knowledge and skills with the highest professional	M6
	and ethical standards.	

Programme Outcomes (POs)

POs	Upon completion of B.Sc. Degree Programme, the graduates will be able to:	Mapping with PEOs
PO1	obtain comprehensive knowledge and skills to pursue higher studies in the relevant field of science.	PEO1
PO2	create innovative ideas to enhance entrepreneurial skills for economic independence.	PEO2
PO3	reflect upon green initiatives and take responsible steps to build a sustainable environment.	PEO2
PO4	enhance leadership qualities, team spirit and communication skills to face challenging competitive examinations for a better developmental career.	PEO1 & PEO3
PO5	communicate effectively and collaborate successfully with peers to become competent professionals.	PEO2 & PEO3
PO6	absorb ethical, moral and social values in personal and social life leading to highly cultured and civilized personality	PEO2 & PEO3
PO7	participate in learning activities throughout life, through self- paced and self-directed learning to improve knowledge and skills.	PEO1 & PEO3

Programme Specific Outcome (PSOs)

PSOs	Upon completion of B.Sc. Physics Degree Programme, the	Mapping
1505	graduates of Physics will be able to:	with POs
	understand the core theories and principles of physics which	PO1
PSO - 1	include mechanics, thermodynamics, electronics, material science	
	etc.	
PSO - 2	develop extensive comprehension of fundamental and diverse	PO2 &
	applications of Physics.	PO3
	apply knowledge of principles, concepts in Physics and analyze	PO4 &
PSO - 3	their local, national and global impact. Apply the critical	PO5
150-5	reasoning and computing skills to analyze and solve problems in	
	physics.	
	analyze the observed experimental data and relate the results with	PO6
PSO - 4	theoretical expectations. Communicate appropriately and	
	effectively, in a scientific context using present technology.	
	develop entrepreneurial skills, empowered according to the	PO5 &
PSO - 5	professional requirement and become self-dependent. Understand	PO7
r50 - 5	the professional, ethical, legal, security, social issues and	
	responsibilities.	

Department: Physics

Class: I B.Sc. Physics

Title of the Course: Heat, Thermodynamics and Statistical Physics

Semester: II

Course Code: PU232CC1

Course Code	L	Т	Р	S	Credits	Inst. Hours	Total Hours		Marks	
						HOUI S		CIA	External	Total
PU232CC1	5	-	-	-	5	5	75	25	75	100

Learning Objectives:

- 1. To understand a basic in conversion of temperature in Celsius, Kelvin and Fahrenheit scales.
- 2. To Relate the laws of thermodynamics, entropy in everyday life and explore the knowledge of statistical mechanics and its relation

Course Outcomes

n the s	uccessful completion of the course, student will be able to:	
1.	acquires knowledge on how to distinguish between temperature and heat, and explain practical measurements of high temperature as well as low temperature physics.	K1 & K2
2.	derive the efficiency of Carnot's engine and discuss the implications of the laws of Thermodynamics in diesel and petrol engines	K1 & K3
3.	analyze performance of thermodynamic systems viz efficiency by problems and gets an insight into thermodynamic properties like enthalpy, entropy	K2 & K3
4.	study the process of thermal conductivity and apply it to good and bad conductors.	K2 & K3
5.	interpret classical statistics concepts such as phase space, ensemble, Maxwell-Boltzmann distribution law, Bose-Einstein and Fermi-Dirac.	K2 & K3

Teaching Plan Total Contact Hours: 75 (Including Lectures, Assignments and Tests)

Unit	Module	Topics	Teaching hours	Cognitive Level	Pedagogy	Assessment/ Evaluation
Ι	Calorin	netry and Low Temperatu	ire Physi	CS		
	1	Specific heat capacity – specific heat capacity of gases C _P & C _V – Meyer's relation	3	K1(R)	Lecture using chalk and talk, Discussion with Videos, mind mapping using	Evaluation through: Quiz using QUIZZIZ,

					TASKADE, Demonstration	Problem Solving
	2	Joly's method for determination of C_V – Regnault's method for determination of C_P	4	K2(U)	Lecture using STEVE.AI, Problem solving	short questions
	3	Joule-Kelvin effect – porous plug experiment – Joule- Thomson effect	4	K2(U)	Demonstration, PPT using SLIDESPILOT, Problem solving, Review	Descriptive answers
	4	Boyle temperature – temperature of inversion – liquefaction of gas by Linde's Process – adiabatic demagnetisation.	4	K2(U)	Demonstration, Peer tutoring, Problem solving, Review	
II	Thermo	odynamics-I			1	
	1	Zeroth law and first law of thermodynamics	3	K1(R)	Demonstration, Peer tutoring, Problem solving, Review Discussion with FLIP, mind mapping using	Evaluation through: Quiz using GOOGLE FORM,
	2	P-V diagram – heat engine –	4	K3(Ap)	TASKADE Demonstration,	short questions
		efficiency of heat engine			Peer tutoring, Problem solving, Review, Discussion with PPT using SLIDESPILOT,	Descriptive answers Problem solving
					mind mapping using TASKADE	

	3	Carnot's engine, construction,	3	K1(R)	Demonstration,	Formative
		working			Peer tutoring,	assessment
					Problem solving,	
					Review, mind	(II CIA)
					mapping using	
					TASKADE	
	4	efficiency of petrol engine and	5	K3(Ap)	Demonstration,	
		diesel engines – comparison of			Peer tutoring,	
		engines			Problem solving,	
					Review	
III	Thern	nodynamics-II				•
	1	Second law of thermodynamics	4	K2(U)	Lecture using	Evaluation
		–entropy of an ideal gas –			chalk and talk,	through:
		entropy change in reversible			Discussion with	MENTIMETER,
		and irreversible processes			video, mind	
					mapping using	
					TASKADE	
	2	T-S diagram –thermodynamical	3	K3(Ap)	Lecture using	short questions
		scale of temperature	C	115(11p)	videos, Problem	
		1			solving	
	3	Maxwell's thermodynamical	4	K2(U)	Lecture using	Descriptive
	5	relations – Clasius-Clapeyron's	4	$\mathbf{K}_{2}(\mathbf{U})$	e	answers
		equation (first latent heat			videos,	
		equation)			Demonstration,	
					Peer tutoring,	Formative
					Problem solving,	assessment
	4	Third large of the sure demonstration	<u> </u>		Review.	
	4	Third law of thermodynamics	4	K3(Ap)	Demonstration,	(I & II CIA)
		– unattainability of absolute			Peer tutoring,	
		zero – heat death.			Problem solving,	
					Review	
IV	Heat 7	Fransfer				
	1	Modes of heat transfer:	2	K2(U)	Lecture using	Evaluation
		conduction, convection and			videos,	through:
		radiation			mind mapping	short test
					using	
					TASKADE	Class Test
	2	Thermal conductivity –	5	K2(U)	Lecture using	1
	1	determination of thermal		× /	videos, Problem	Multiple
		determination of thermal			· · · · · · · · · · · · · · · · · · ·	-
					solving	choice
		conductivity of a good conductor by Forbe's method			solving	
		conductivity of a good			solving	choice questions

	3	conductor by Lee's disc method. Radiation: black body	4	K3(Ap)	Demonstration,	Quiz using SLIDO Formative assessment
		radiation (Ferry's method) – distribution of energy in black body radiation – Wien's law and Rayleigh Jean's law	-	KJ(Ap)	Peer tutoring, Problem solving, Review	Short Summary or Overview
	4	Planck's law of radiation – Stefan's law – deduction of Newton's law of cooling from Stefan's law.	4	K3(Ap)	Demonstration, Peer tutoring, Problem solving, Review	(II CIA)
V	Statist	ical Mechanics			L	1
	1	Definition of phase-space – micro and macro states – ensembles –different types of ensembles	3	K2(U)	Lecture using chalk and talk, Discussion with PPT, mind mapping using TASKADE	Evaluation through: short test Class Test
	2	Classical and quantum Statistics – Maxwell Boltzmann statistics – expression for distribution function	5	K3(Ap)	Demonstration, Problem solving	Multiple choice questions Quiz
	3	Bose-Einstein statistics – expression for distribution function	3	K3(Ap)	Demonstration, Peer tutoring, Problem solving, Review.	Formative assessment Short
	4	Fermi-Dirac statistics – expression for distribution function – comparison of three statistics.	4	K3(Ap)	Demonstration, Peer tutoring, Problem solving, Review.	- Summary or Overview (II CIA)

PO- Program outcome; LO – Learning outcome; Cognitive Level U – Understand; Ap- Apply, An- Analyze; K- Knowledge

Course Focussing on Employability/ Entrepreneurship/ Skill Development : Skill Development Activities (SD): Hands on training on modes of heat transfer.

Course Focussing on Cross Cutting Issues(Professional Ethics/ Human Values/Environment Sustainability/

Gender Equity): -

Activities related to Cross Cutting Issues :-

Assignment : Heat engines.

Sample Questions

Part A

- 1. ______ is the unit of specific heat capacity. (K1 R, CO 1)
- 2. _____ law defines the term temperature. (K1 R, CO 2)
- 3. State True / False. Absolute zero temperature can be easily attained. (K2 U, CO 3)
- 4. Define temperature gradient. (K2 U, CO 4)
- 5. Ensembles are classified into ______ types. (K1 R, CO 5)

Part B

- 1. Write a short note on adiabatic demagnetisation. (K1 R, CO 1)
- 2. Calculate the efficiency of Carnot's engine working between the temperatures 227°C and 15°C. (K3- Ap, CO -2)
- 3. Derive Claussius latent heat equation. (K3- Ap, CO -3)
- 4. State and explain laws relating to black body radiation and bring out characteristics of black body radiations. (K2- U, CO -4)
- 5. Distinguish between Maxwell Boltzmann, Fermi Dirac and Bose Einstein statistics. (K2- U, CO -5)

Part C

- 1. Derive Meyer's relation for the two specific capacity of a gas. (K2- U, CO -1)
- 2. Explain the construction and working of Otto engine. (K2- U, CO -2)
- 3. Derive Maxwell's thermodynamic relations. (K2- U, CO -3)
- 4. Explain Lee's method of determining the thermal conductivity of a bad conductor. (K2- U, CO -4)
- 5. Obtain the expression for Fermi Dirac distribution law. Using it, derive expression for the Fermi energy of an electron in a metal. (K3- Ap, CO -1)

Wirmala dowi Dr. C. NIRMALA LOUIS, M.Sc., Ph.D., PGDCA Head & Assistant Professor. PG & Research Department of Physics. Holy Cross College (Autonomous), Nagercoil, Kanyakumari District, Tamil Nadu. PIN: 629 004.

A. Lesly Lathema Rhyldhauge.

Head of the Department: Dr. C. Nirmala Louis

Course Instructor : Dr. A. Lesly Fathima & Dr. P. Aji Udhaya

Department	: Physics
Class	: I B.Sc Mathematics
Title of the Course	: ELECTIVE COURSE–II: ALLIED PHYSICS FOR
	MATHEMATICS – II
Semester	: II
Course Code	: PU232EC1

Course Code	L	Т	Р	s	Credits	Inst. Hours	Total Hours		Marks	
	_	-	-	2		nours	nours	CIA	External	Total
PU232EC1	4		-		3	4	60	25	75	100

Learning Objectives:

- 1. To impart basic principles of Physics
- 2. To incorporate concepts of Physics in day to day life

Course Outcomes

On the s	uccessful completion of the course, student will be able to:	
CO1	explain the concepts of interference, diffraction and rephrase the concept of polarization	K1 & K2
CO2	outline the basic foundation of different atom models and relate the importance of theoretical models	K1 & K2
CO3	understand the properties of nuclei, nuclear forces, structure of atomic nucleus and nuclear models and interpret nuclear processes like fission and fusion.	K2& K3
CO4	describe the basic concepts of relativity like equivalence principle, inertial frames and Lorentz transformation.	K3 & K4
CO5	summarize the working of semiconductor devices like diodes, transistors, USB chargers and EV charging stations.	K4& K5

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Teaching Hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι	1.	Interference – interference in thin films –colors of thin films – air wedge – determination of diameter of a thin wire by air wedge	4	K1(R)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	Evaluation through: short test Class Test Quiz through
	2.	2. diffraction – 4 K1(R) Peer tutoring, diffraction of light vs sound – normal incidence solving, Demonstration		Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	Quizziz Formative assessment	
	3.	experimental determination of wavelength using diffraction grating (no theory) – polarization	3	K2(U)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	through Hot Potatoes
	4.	polarization by double reflection – Brewster's law – optical activity – application in sugar industries	4	K2(U)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	
Π	5.	Atom models – Bohr atom model – mass number – atomic number – nucleons – vector atom model	4	K1(R)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping	Evaluation through: short test Class Test
	6.	various quantum numbers – Pauli's exclusion principle – electronic configuration – periodic classification of elements – Bohr magneton	4	K1(R)	Peer tutoring, Lecture using videos, Problem solving, Derivation, PPT, Review	Multiple choice questions Quiz through Nearpod
	7.	Stark effect – Zeeman effect (elementary ideas only) – photo electric effect – Einstein's	3	K2(U)	Lecture using Chalk and talk ,Introductory session, Group	Formative assessment through

		photoelectric equation			Discussion, Mind mapping,	Mentimetre
	8	applications of photoelectric effect: solar cells, solar panels, optoelectric devices	4	K2(U)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	
Ш	9	Nuclear models – liquid drop model – magic numbers – shell model – nuclear energy – mass defect – binding energy – radioactivity – uses – half life – mean life - radio isotopes and uses	3	K2(U)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	Evaluation through: short test Class Test
	10	controlled and uncontrolled chain reaction – nuclear fission – energy released in fission – chain reaction – critical reaction – critical size- atom bomb – nuclear reactor	4	K2(U)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	Match the following through Hot Potatoes
	11	breeder reactor – importance of commissioning PFBR in our country – heavy water disposal, safety of reactors: seismic and floods	4	K3(Ap)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	Formative
	12	introduction to DAE, IAEA – nuclear fusion – thermonuclear reactions – differences between fission and fusion.	4	K3(Ap)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	through Quizziz
IV	13	Frame of reference – postulates of special theory of relativity – Galilean transformation equations	4	K3(Ap)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping	Evaluation through: short Class Test
	14	Lorentz	3	K3(Ap)	Peer tutoring,	

	15	transformation equations – derivation – length contraction – time dilation – twin paradox – mass-energy equivalence – introduction on gravitational waves	4	K4(An)	Lecture using videos, Problem solving, Derivation, PPT Lecture using Chalk and talk ,Introductory session, Group Discussion, Mind mapping,	Multiple choice questions Quiz through Slido
	16	LIGO, ICTS opportunities at International Centre for Theoretical Sciences	4	K4(An)	Peer tutoring, Lecture using videos, Problem solving, Derivation, PPT, Review	Formative assessment through Nearpod
V	17	p-n junction diode – forward and reverse biasing – characteristic of diode – zener diode	4	K4(An)	Lecture using Chalk and talk ,Introductory session, Group Discussion, Derivation	Evaluation through: short Class Test
	18	characteristic of zener diode – voltage regulator – full wave bridge rectifier	4	K4(An)	Peer tutoring, Lecture using videos, Problem solving, PPT,	Multiple choice questions Quiz
	19	construction and working – advantages (no mathematical treatment) – USB cell phone charger	3	K5(E)	Lecture using Chalk and talk ,Derivation, Group Discussion, Mind mapping,	Formative assessment through Hot Potatoes
	20	introduction to e- vehicles and EV charging stations	4	K5(E)	Peer tutoring, Lecture using videos, Problem solving, PPT	

Course Focussing on Employability/ Entrepreneurship/ Skill Development : Skill Development

Activities (Em/ En/SD): Display on IC collection

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Environment Sustainability

Activities related to Cross Cutting Issues : -

Assignment : introduction to e-vehicles and EV charging stations (IC 7483)

Seminar Topic: ICTS opportunities at International Centre for Theoretical Sciences

Sample questions

Part A

- 1. Double refraction does not take place. (K1-R, CO-1)a) in quartz b)in calcite c)in water d) none of the above
- 2. Atomic radius is the ------ distance from the nucleus of an atom to the outermost orbit. (K2-U, CO-2)
 (a) half
 (b) mean
 (c) total
 (d) None
- 3. Nuclei having same mass number are named as _____(K2- U, CO-3)
 - (a) isotopes (b) isobars (c) isotones (d) isomer
- 4. All the accelerated frames are inertial frames of reference. TRUE/FALSE (K4- An, CO 4)
- 5. The emitter current is the sum of the base current and the collector current. True / False.

(K4- An, CO-5)

Part B

- 1. State and devise Bragg's law. (K2- U, CO-1)
- 2. Explain the significance of vector atom model. (K2-U, CO-2).
- 3. Distinguish between nuclear fission and nuclear fusion. (K2-U, CO-3)
- 4. Obtain the Lorentz transformation equations. (K3-Ap, CO-4)
- 5. How the zener diode acts as a voltage regulator? Explain. (K4-An, CO-5)

Part C

- 1. Derive the expression for the fringe width. Give the experimental procedure to measure the diameter of thin wire using Air wedge. (**K2-U**, **CO-1**)
- 2. Explain about atomic radius and calculate the radius and energy of the electron in the nth orbit in hydrogen atom. (K2-U, CO-2)
- 3. Give a detailed account on the properties of nucleus. (K3- Ap, CO-3)
- 4. Obtain the Galilean transformation equations. (K4- An, CO -4)
- 5. Construct the Bridge Rectifier and explain the working principle.(K6-C,CO-5)

 Dr. C. NIRMALA LOUIS, M.Sc., Ph.D., PGDCA. Head & Assistant Professor,
 PG & Research Department of Physics. Holy Cross College (Autonomous), Nagercoil, Kanyakumari District, Tamil Nadu, PIN: 629 004.

Dr. C. Nirmala Louis Head of the Department

S. Virgin Jebs

Dr. S. Virgin Jeba Course Instructor

Department	:	Physics
Title of the Course	:	Skill Enhancement Course – Digital Photography
Semester	:	П
Course Code	:	PU232SE1

Course Code	L	Т	Р	S	Credits	Inst. Hours	Total Hours		Marks	
						nours	nouis	CIA	External	Total
PU232SE1	2	-	-	-	2	2	30	25	75	100

Prerequisites:

Basic Knowledge in optics and imaging.

Learning Objectives:

- 1. To understand the principles of photography and image formation and the science and arts behind it.
- 2. To understand the essential components of conventional and digital cameras and also the different image processing techniques.

Course Outcome

Or	On the successful completion of the course, student will be able to:					
1	describe the principle of image formation in Photography	K2				
2	apply the parameters for controlling the images	К3				
3	identify different types of camera	K4				
4	explain the image formation in Digital Photography	K2				
5	illustrate the digital image – postproduction procedures	K3				

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create

Teaching plan

Total Contact hours: 30 (Including lectures, assignments and tests)

Uni t	Modu le	Торіс	Teachi ng Hours	Cognitive level	Pedagogy	Assessment/Evaluat ion
Ι	РНОТО	GRAPHY AND B	ASIC PRI	NCIPLE OF I	MAGE FORM	ATION
	1	Principle –	2	K2(U)	Demonstrat	
		chemical route			ion,	Evaluation through:
		and digital				Online quiz
		route -light,				using Slido and
		wavelengths,				Nearpod, short
		colours –				questions,,

I						
		shadows				MCQ, Trace (False Short
	2	light intensity	2	K2(U)	PPT,	True/False, Short
	2	and distance –	2	K2(U)	illustration,	essays
		making light			blended	
		form images			classroom	
	3	pin-hole images –	1	K2(U)		
	5	practical	1	K2(0)	Illustration,	
		limitations to pin-			flipped	
		hole images – lens			classroom	
		instead of pin-hole				
	4	focal length and	1	K2(U)		
		image size –			classroom	
		imaging of closer subjects.				
		subjects.				
II	I ENGEG	- CONTROLLING	т не і л/	LACES		
11	<u>LENSES</u> 1		<u>1 HE IN</u> 2	IAGES	PPT, Group	
	1	Photographic lens –	-	K3(Ap)	Discussion,	Evaluation
		focal length and		K3(Ap)	blended	through: Online
		angle of view			classroom	quiz through
		(problems)				slido and
						nearpod,
						Short questions
						Descriptive
	2	focusing movement	2	K3(Ap)	PPT, Group	answers
	-	– aperture and f-	-	113 (11 p)	discussion	
		numbers (problems)				Formative
		-				assessment I
	3	depth of field-depth	1	K2(U)	Concept	
		of focus – image				
		stabilization				
					Explanation, Theoretical	
					formulation	
					TOTHIUTAUOII	
	4	lenses for digital	1	K2(U)	+	
	-	cameras – lens and	Ŧ	112(0)		
		camera care				
					Demonstration,	
					Group	
					Discussion,	
					Flipped	
тт	CANT			TYDES	classroom	
III		RA USING FILMS A			I a atr	
	1	Camera and its essential	2	K2(U)	Lecture	
		components- shutter				
		– aperture – light				
		measurement – film				
		housing				

	2	– camera types: view camera– view finder camera – camera types: view camera– view	2	K4(An)	method, Concept Explanatio n, Peer group learning, PPT Illustration, flipped classroom Theoretical	Evaluation through: Online Quiz through slido and nearpod, short questions Descriptive answers MCQ, True/False, Concept explanations, Formative
		finder camera			formulation Group Discussion	assessment I/II
	3	Reflex camera– single lens reflex (SLR) camera	2	K2(U)	Group discussio n, blended classroom , PPT	
IV	DIGITA	L CAMERAS PRIN	CIPLE A	ND TYPES		
	1	Principle of digital image capturing – comparison of digital and analog picture information – megapixel – grain, noise and pixel density	2	K2(U)	Lecture method, Peer group learning, PPT	Evaluation through: Online quiz through slido and nearpod, short questions Descriptive answers MCQ, True/False, Concept explanations, Short
		optical and digital zooming – image stabilizer – bit depth – white balance – colour modes – file formats (TIFF, RAW & JPEG) – storage cards and types	2	K2(U)	Lecture method, group discussi on, PPT	explanations, Short

	3	digital cameras:	2	K2(U)	Group	Summary
		camera phones –			discussion,	
		compact camera –			PPT	Formative
		hybrid camera –				assessment II
		digital SLR				
V	THE DIG	GITAL IMAGE – PO	ISTPRO	DUCTION		
•	1	JITAL INIAGE - I (2	K2(U)	Lecture	Evaluation
	1	Hardware:	4	$\mathbf{K}_{2}(\mathbf{U})$	method,	through: Online
					· · · · ·	U
		computer and its			Peer group	quiz through slido and
		peripherals –			learning, PPT	
		software: saving			PP1	nearpod
		digital file – basic				1
		editing: navigating				short questions
		the image –				Descriptive
		undo/redo/history -				answers
		crop – rotate –				MCQ, True/False,
		brightness & amp;				Concept
		contrast – colour				explanations,
		balance –				
		hue/saturation –				
		dodge/burn	•		T .	
	2	cloning & amp; retouching –	2	K2(U)	Lecture	
		removing an			method,	
		element in an			Peer group	
		image –			learning,	
		advanced editing:			PPT	
		histogram/levels				
		- curves				
						Formative
	3	selection tools:	2	K2(U)	Lecture	assessment II
		magic wand –			method,	
		printing digital			Peer group	
		images: inkjet printer – laser			learning,	
		printer – laser printer – dye sub			PPT	
		printer – lambda/				
		light jet printers.				
		-Bit Jet Printers.				

Course Focussing on Employability/ Entrepreneurship / Skill Development: Skill Development

Activities (Em/ En/SD): Group Discussion

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human

Values/Environment Sustainability/ Gender Equity): Professional Ethics

Activities related to Cross Cutting Issues: Album making- Camera and is essential components

Assignment: (Mention Topic and Type): **Digital Cameras descriptions through Google Classroom**

Seminar Topic: (if applicable): -

Sample questions (minimum one question from each unit)

Part A (1 mark)

1. The abbreviation for SLR is _____(K2-U, CO-2)

2. View finder camera is one of the types of camera. Say True / False. (K2-U, CO-3)

3. Frequency and wavelength are inversely proportional. True / False (K2-U, CO-1)

4. Which one of the following is used to save the file as image document? (K2- U,

CO-4)

a) Adobe reader	b) Notepad	c) JPEG	d) BIT
5. Which one of the followin	g is an example	for digital recording? (K	(1-R, CO-5)

a) VCD	b) CD
c) Floppy	d) film

Part B (4 marks)

1. Write short notes on pin hole images. (K2-U, CO-1)

2. Write short note on lens and camera care (K2-U, CO-2)

3. Explain the essential components of camera. (K2-U, CO-3)

4. Explain the mechanism of digital image capturing. (K2-U, CO-4)

5. Write short notes on selection tools. (K1-R, CO-5)

Part C (8 marks)

- 1. Give a detailed account on principle of chemical route and digital route. (**K2-U**, **CO-1**)
- 2. Discuss the concept of photographic lenses. (K2-U, CO-2)
- 3. Describe the different types of camera. (K2-U, CO-3)
- 4. Discuss the types of digital cameras. (K4-An, CO-4)
- 5. Give a detailed account on lambda / light jet printers. (K1-R, CO-5)

Wirmala down Dr. C. NIRMALA LOUIS, M.Sc., Ph.D., PGDCA Head & Assistant Professor, PG & Research Department of Physics. Holy Cross College (Autonomous), Nagercoil. Kanyakumari District. Tamil Nadu. PIN: 629 004.

prujs

Course Instructor

Dr. C. Nirmala Louis

Head of the Department

Dr. R. Krishna Priya

Department	:	Physics
Title of the Course	:	Non Major Elective: Physics of Music
Semester	:	П
Course Code	:	PU232NM1

Comme Code	т	т	р	C 1:4	T.,	Total	Marks		
Course Code	L	I	P	Credits	Inst. Hours	Hours	CIA	External	Total
PU231NM1	2	-	-	2	2	30	25	75	100

Pre-requisite:

Students should know about the basic knowledge regarding sound, vibrating systems and musical instruments.

Learning Objectives:

- 1. To educate and instruct students on the significance of physics in music.
- 2. To gain understanding of musical notes and instruments.

Course Outcomes

On the su	accessful completion of the course, student will be able to:	
1.	understand the principles and basic scientific concepts in sound waves	K2
2.	understand the various phenomena of simple vibrating systems.	K1
3.	comprehend the various musical notes and its production	K2
4.	apply the knowledge of recording music in day to day life activities.	K3
5.	know the scientific concepts of music	K2

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create

Teaching plan

Total Contact hours: 30 (Including lectures, assignments and tests)

Uni t	Modu le	Торіс	Teachi ng Hours	Cognitive level	Pedagogy	Assessment/Evaluat ion
Ι	SCIENT	TIFIC STUDY OF	MUSIC			
	1	vibrations of	2	K2(U)	Demonstrat	
		atoms of			ion,	Evaluation through:
		matter-				Online quiz
		vibrations				using
		coupling to air				QuizaliceAI,
	2	propagation of	2	K2(U)	PPT,	short questions, ,
		sound waves in			illustration,	MCQ,
		air, other media,			blended	True/False, Short
		fluids & solids			classroom	essays

1 1	2	valagity	1		DDT	
	3	velocity,	1	K2(U)	PPT,	
		frequency,			Illustration,	
		wavelength, time			flipped	
		period, intensity: definition and unit			classroom	
		fs – classification				
		of sound on				
		frequency and				
		velocity				
	4	human & animal	1	K2(U)	PPT, blended	
		sound perception-			classroom	
		mechanism of ear				
		and hearing –				
		psychoacoustics				
п	CIMDI E	VIDDATING CVC	TEMO			
П	SIMPLE 1	VIBRATING SYST	<u>EMS</u>		PPT, Group	
		Simple homesis	4	VOUD	· · ·	Evelvetion
		Simple harmonic		K2(U)	Discussion,	Evaluation
		motion – tuning fork			blended	through: Online
					classroom	quiz through
						slido and
						nearpod,
						Short questions
						Descriptive
	2	amplitude, phase,	2	K2(U)	PPT, Group	answers
		energy, energy			discussion	d115 W C1 5
		loss/damping/				Formersting
		dissipation – power				Formative
		 travelling waves 				assessment I
		and standing waves				
	3	1	1		Concert	
	-	laws of vibration in	1	K2(U)	Concept	
		stretched strings-				
		one-dimensional				
		medium – open and				
		closed organ pipes				
					Explanation,	
					Theoretical	
					formulation	
	4		1			4
	4	over tones,	1	K2(U)		
		harmonics –				
		quality of sound:				
		pitch, timber,				
		loudness –				
		octaves, musical				
		notes				
					Demonstration,	
					Group	
					Discussion,	
					Flipped	
					classroom	
III	MUSIC	AL TONE				

	1	pure/simple tones – sine/cosine waves– well-defined frequencies, wavelengths, amplitudes & phases	2	K2(U)	Lecture method, Concept Explanatio n, Peer group learning, PPT	Evaluation through: Online Quiz through slido and Quizalice AI, short questions Descriptive answers MCQ, True/False, Concept
	2	partial tones – assembly of pure tones– mix of different frequencies & amplitudes– complex tone – superposition of simple tones	2	K2(U)	Illustration, flipped classroom	Formative
	3	complex	2	K2(U)	formulation Group Discussion Group	assessment I/II
		waveform- periodic complex waveform - formants - resonances- sound envelope			discussio n, blended classroom , PPT	
IV		JCTION OF MUSIC				
	1	human voice,mechanism of vocal sound production – larynx (sound box)	2	K2(U)	Lecture method, Peer group learning, PPT	Evaluation through: Online quiz through nearpod, short questions Descriptive
	2	stringed Instruments:plu cked &bowed, guitar,	2	K2(U)	Lecture method, group discussi	answers MCQ, True/False, Concept explanations, Short

	3	mandolin, violin, piano, etc. – wind instruments: whistles, flute, saxophone, pipe organ, bag pipes,etc percussion instruments, electronic instruments, analog	2	K2(U)	on, PPT Group discussion, PPT	Summary Formative assessment II
		and digital sound				ussessment II
V	RECODI	synthesizers DING OF MUSIC &	SOUND			
	1	Edison phonograph – cylinder & disk records – magnetic wire and tape recorders – digital recording	2	K1(R)	Lecture method, Peer group learning, PPT	Evaluation through: Online quiz through slido and nearpod short questions
	2	analog transducers, condenser, dynamic microphones, loudspeaker – complex sound fields	2	K1(R)	Lecture method, Peer group learning, PPT	Descriptive answers MCQ, True/False, Concept explanations, Formative
		digital signal processing – digital filtering – specifications of recording studios	2	K1(R)	Lecture method, Peer group learning, PPT	assessment II

Course Focussing on Employability/ Entrepreneurship / Skill Development:

Employability

Activities (Em/ En/SD): Exhibition on types of musical instruments and their working

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment

Sustainability/ Gender Equity): Professional Ethics

Activities related to Cross Cutting Issues: Album making- Simple harmonic motion

Assignment: (Mention Topic and Type): Mechanism of ear and hearing - descriptions through Google Classroom

Seminar Topic: (if applicable): -

Sample questions (minimum one question from each unit)

Part A (1 mark)

1. Frequency and wavelength are inversely proportional. True / False (K2-U, CO-1)

- 2. The abbreviation for MIDI is _____(K2-U, CO-2)
- 3. Drums is an example of percussion instruments. Say True / False. (K2-U, CO-3)
- 4. Which one of the following instrument is a wind instrument? (K2- U, CO-4)
- a) Whistles b) xylophone c) cymbals d) guitars

5. Which one of the following is an example for digital recording? (**K1-R, CO-5**)

a) VCD b) CD c) Floppy d) film

Part B (4 marks)

- 1. Write short notes on propagation of sound waves in air (K2-U, CO-1)
- 2. Write the difference between traveling waves and standing waves (K2-U, CO-2)
- 3. Explain the sine and cosine waves? (K2-U, CO-3)
- 4. Explain the mechanism of vocal sound production. (K2-U, CO-4)
- 5. How did Edison phonogram workst? (K1-R, CO-5)

Part C (8 marks)

- 1. Give a detailed account on psychoacoustics. (K2-U, CO-1)
- 2. Discuss the concept of simple harmonic motion. (K2-U, CO-2)
- 3. Describe the superposition of simple tones in detail. (K2-U, CO-3)
- 4. Discuss the types of stringed instruments with example. (K2-U, CO-4)
- 5. Give a detailed account on digital signal processing. (K1-R, CO-5)

Head of the Department

Course Instructor

Dr. C. Nirmala Louis

Dr. S. Virgin Jeba

Department: Physics

Class: II B.Sc. Physics

Title of the Course: Optics and Spectroscopy

Semester: IV

Course Code: PU234CC1

Course Code	L	Т	Р	S	Credits	Inst. Hours	Total Hours	CIA	Marks External	Total
PU234CC1	5	-	-	-	5	5	75	25	75	100

Learning Objectives:

1. To provide an in-depth understanding of the basics of various phenomena in geometrical and wave optics and explain the behaviour of light in different mediums.

2. To comprehend the variations in the major phenomena interference, diffraction, and polarization and to use the understanding in day-to-day activities.

Course Outcomes

1	outline basic knowledge of methods of rectifying different defects in lenses, articulate technological applications of eyepieces.	K1
2	understand the wave nature of light through working of interferometer.	K2
3	apply the knowledge of nature of light through diffraction techniques and apply mathematical principles to analyse the optical instruments.	К3
1	categorise basic formulation of polarization and appraise its usage in industries.	K4
5	evaluate the principles of optics to various fields of IR, Raman and UV spectroscopy and understand their instrumentation and application in industries	К5

Teaching Plan

Total Contact Hours: 75 (Including Lectures, Assignments and Tests)

Unit	Module	Topics	Teaching hours	Cognitive Level	Pedagogy	Assessment/ Evaluation
Ι	Lens and	Prisms				
		Lens maker's formula – Equivalent focal length of two thin lenses separated by a distance.		K1(R)	Lecture using chalk and talk, Discussion with Videos, Demonstration	Evaluation through: Quiz using QUIZZIZ,

	2	Aberrations:Sphericalaberrationinalens	5	K1(R)	Lecture using STEVE.AI,	
		Methods of minimizing Spherical aberration- condition for minimum spherical aberration – Chromatic aberration.			Problem solving, mind mapping using TASKADE	Problem Solving
	3	Prism: Dispersion, deviation, Achromatic combination of Prisms	3	K1(R)	Demonstration, PPT using SLIDESPILOT, Review	Descriptive
	4	Dispersion without deviation –Deviation without dispersion – applications – Direct vision spectroscope.	4	K1(R)	Demonstration, Peer tutoring, Problem solving, Review	answers
II	Interfer	ence				
	1	Division of wave front – Fresnel's biprism – fringes with white light ,	3	K2(U)	Demonstration, Peer tutoring, Problem solving, Review Discussion with FLIP.	Evaluation through: Quiz using GOOGLE FORM,
	2	Division of amplitude: interference in thin films due to reflected light - transmitted light	4	K2(U)	Discussion with PPT using SLIDESPILOT,	short questions
					mind mapping using TASKADE	Description
	3	Air wedge – Newton's rings. Michelson's interferometer – applications	3	K2(U)	using	- Descriptive answers
	3	Michelson's interferometer –	3	K2(U)	using TASKADE Demonstration, Peer tutoring, Problem solving,	-

1	Fresnel's assumptions – zone plate – action of zone plate for an incident spherical wave front –	4	K3(Ap)	Lecture using chalk and talk, Discussion with video, mind mapping using TASKADE	Evaluation through: MENTIMETER,
2	Differences between a zone plate and a convex lens –	3	K3(Ap)	Lecture using videos, Problem solving	short questions
3	Fresnel type of diffraction – diffraction pattern due to a straight edge– Fraunhofer type of diffraction – Fraunhofer diffraction at a single slit –	4	K3(Ap)	Lecture using videos, Demonstration, Peer tutoring, Problem solving, Review.	Descriptive answers Formative assessment
4 7 POLA	Plane diffraction grating– experiment to determine wavelengths.	4	K3(Ap)	Lecture using STEVE.AI, Demonstration, Peer tutoring, Problem solving, Review	(I & II CIA)
1	Polarizer and analyser – double refraction – optic axis, principal plane	3	K4(An)	Lecture using chalk and talk, Discussion with Videos, Demonstration	Evaluation through: Quiz using QUIZZIZ,
2	Huygens's explanation of double refraction in uniaxial crystals	4	K4(An)	Lecture using STEVE.AI, Problem solving, mind mapping using TASKADE	Problem Solving short questions
3	Polaroids and applications – Circularly and elliptically polarized light – quarter wave plate – half wave plate	4	K4(An)	Demonstration, PPT using SLIDESPILOT, Review	Descriptive answers

	4	Production and detection of circularly and elliptically polarized lights – Fresnel's explanation.	4	K4(An)	Demonstration, Peer tutoring, Problem solving, Review	
V	SPECT	ROSCOPY				
	1	Infra-red spectroscopy-Near infra-red and far infra-red – Properties –	3	K5(E)	Demonstration, Peer tutoring, Problem solving, Review Discussion with FLIP.	Evaluation through: Quiz using GOOGLE FORM,
	2	IR source- IR Detectors -IR spectrophotometer – applications -Scattering of light	4	K5(E)	Discussion with PPT using SLIDESPILOT, mind mapping using TASKADE	short questions
	3	Raman effect - Experimental study of Raman effect –applications – Ultraviolet and visible spectroscopy	4	K5(E)	Demonstration, Peer tutoring, Problem solving, Review.	- Descriptive answers Problem solving
	4	properties – UV source – UV Detectors- Spectrographs for UV regions- Applications	4	K5(E)	Demonstration, Peer tutoring, Problem solving, Review	Formative assessment (II CIA)

PO- Program outcome; LO – Learning outcome;

Cognitive Level R- Remember, U - Understand; Ap- Apply, An- Analyze; K- Knowledge

Course Focussing on Employability/ Entrepreneurship/ Skill Development : Skill Development Activities (SD): Hands on training on modes of heat transfer.

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/

Gender Equity): -

Activities related to Cross Cutting Issues :-

Assignment: Correction Lens

Sample Questions

Part A

- 1. Spherical aberration in a lens occurs because: (K1 R, CO 1)
 - A) Light rays passing through different parts of the lens focus at different points.
 - B) Different wavelengths focus at different points.
 - C) Light rays bend away from the principal axis.
 - D) Light rays passing through the center of the lens focus closer than those at the edges.
- 2. The central fringe in Newton's rings appears dark because: (K1 R, CO 2)
 - A) All light is reflected at the glass-air interface.
 - B) The thickness of the air film is zero at the center.
 - C) There is maximum light interference at the center.
 - D) The wavelength of light is halved at the center
- 3. State True / False. A zone plate acts like a concave lens. (K3 Ap, CO 3)
- 4. If an analyzer is rotated by 45° from the direction of polarization, by what factor does the transmitted light intensity change? (**K2 U, CO 2**)
 - (A) It doubles
 - (B) It becomes zero
 - (C) It reduces by half
 - (D) It remains the same
- 5. What is the main reason IR spectroscopy is particularly effective in identifying functional groups in organic compounds? (K2- U, CO -2)
 - (A) Functional groups have unique bond lengths.
 - (B) Functional groups absorb IR light at specific frequencies.
 - (C) IR spectroscopy can identify isotopes.
 - (D) Functional groups fluoresce under IR light.

Part B

- 1. Derive the Lens Maker's Formula for a thin lens. (K1 R, CO 1)
- 2. Explain the principle of Fresnel's biprism and derive the formula for the fringe width in the interference pattern formed by a biprism. (K2- U, CO -2)
- 3. Explain Fresnel diffraction and discuss how it differs from Fraunhofer diffraction. (K3- Ap, CO -3)
- 4. Compare and contrast the roles of a polarizer and an analyzer in a setup to observe polarized light. How does each component affect the intensity and orientation of the transmitted light? (K4- An, CO -4)

 Assess the impact of IR spectroscopy in the structural analysis of organic compounds. How effective is IR spectroscopy for determining functional groups compared to other spectroscopic methods? (K5- E, CO -5)

Part C

- 1. Discuss chromatic aberration in detail, including its causes, effects on image quality, and methods for correction. (K1 R, CO 1)
- 2. Derive the expression for the radius of the nth dark ring in Newton's rings experiment. How the experiment can be used to determine the wavelength of light. (K2- U, CO -2)
- 3. Describe the Fraunhofer diffraction pattern observed from a single slit. Derive the condition for the angular position of minima. (K3- Ap, CO -3)
- Examine the reasons why certain materials are better suited to function as polarizers or analyzers. What characteristics of these materials contribute to their effectiveness in polarizing light? (K4- An, CO -4)
- 5. Justify the use of Raman spectroscopy over other spectroscopic methods in fields such as medical diagnostics and chemical analysis. What unique advantages does it offer for molecular identification? (K5- E, CO -5)

Wirmala dowi

Dr. C. NIRMALA LOUIS, M.Sc., Ph.D., PGDCA. Head & Assistant Professor, PG & Research Department of Physics. Holy Cross College (Autonomous), Nagercoil. Kanyakumari District. Tamil Nadu. PIN: 629 004.

Dr. C. Nirmala Louis

Head of the Department:

Jenipha Mary Rhylldhays.

Dr. S.J. Jenepha Mary& Dr. P. Aji Udhaya

Course Instructor :

Department : Physics

Class : II B.Sc Chemistry

Title of the Course: Elective Course IV: Allied Physics for Chemistry - II

Semester : IV

Course Code : PU234EC1

Course	L	Т	P	S	Credits	Inst. Hours	Total	Marks		
Code							Hours	CIA	External	Total
PU234EC1	4	-	-	-	3	4	60	25	75	100

Learning Objectives:

1. To obtain an all-encompassing comprehension of the basic ideas of physics.

2. To analyse the fundamental ideas behind optic, electronics, relativity and quantum physics.

Course Outcomes

On the	e successful completion of the course, student will be	able to:
1.	explain the notions of interference, diffraction and polarization using principles of superposition of waves.	K1
2.	understand the basic foundation of different atom models and periodic classification of elements.	K2
3.	apply the basic concepts of relativity like inertial frames and get an overview of research projects of National and International importance	К3
4.	relate the properties of nuclei, nuclear forces, structure of atomic nucleus and nuclear models.	K4
5.	Defend the working of semiconductor devices like junction diode, Zener diode and practical devices.	K5

Modules

Total Contact hours: 6	60 (Including	lectures	assignments	and tests)
Total Contact nours.	וטל	Including	icciui co,	assignments	, and itsis/

TI		otal Contact hours	Teaching	Cognitive		Assessment/Evaluation
Unit	Module	Торіс	Hours	level	Pedagogy	
Ι	OPTICS :				1	
	1	Interference – interference in thin films – colours of thin films – air wedge	3	K1(R)	Lecture using chalk and talk, Introductory session, Group discussion Mind mapping	Evaluation through: short test, Class test, Multiple choice Questions, Quiz, Formative
	2	Determination of diameter of a thing wire by air wedge – diffraction normal incidence	3	K2(U)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	assessment, Shorts Summary or Overview
	3	Experimental determination of wavelength using diffraction grating (no theory) - polarization	3	K3(Ap)	Lecture using chalk and talk, Introductory session, Group discussion Mind mapping	
	4	Polarization by double refraction – Brewster's law – optical activity – Appliction in sugar industry	3	K1(R)	Peer tutoring, Lecture using videos, Problem solving, Demonstration, PPT, Review	
II	ATOMIC	C PHYSICS:			1	
	1	Atom models – Bohr atom model – mass number – atomic number – nucleons – vector atom model – various quantum numbers	4	K1(R)	Lecture using chalk and talk, Introductory session, Group discussion Mind mapping	Evaluation through: short test, Class test, Multiple choice Questions, Quiz, Formative assessment
	2	Pauli's exclusion principle – electronic configuration – periodic classification of elements.	4	K2(U)	Peer tutoring, Lecture using videos, Problem solving, Demonstration PPT, Review	
	3	Stark effect – Zeeman effect (elementary ideas only) – photo electric	4	K3(Ap)	Lecture using chalk and talk, Introductory session, Group discussion	

		effect –			Mind mapping	
		Einstein's			wind mapping	
		photoelectric				
		equation.				
III		AR PHYSICS:				
	1	Nuclear models –	4		Lecture	Evaluation
		liquid drop model		K1(R)	using chalk	through: short test,
		- shell model -			and talk,	Class test, Multiple
		magic numbers			Introductory	choice Questions,
					session,	Quiz, Formative
					Group	assessment, Shorts
					discussion	,
					Mind	Summary or
					mapping	Overview
	2	Nuclear energy –	4	K1(R)	Peer	
	-	mass defect –	•		tutoring,	
		binding energy			Lecture	
		curve – Natural			using	
		radioactivity –			videos,	
		half-life – mean			Problem	
		life			solving,	
		lite			Demonstrati	
					on PPT,	
					Review	
	3	Nuclear fission	4		Lecture	
	3	and fusion –	4	K2(U)		
					using chalk	
		comparison –			and talk,	
		energy released in fission –			Introductory	
		thermonuclear			session,	
		reactions			Group discussion	
		reactions			Mind	
IV	NUCLE	AR REACTORS:			mapping	
1 V			4		T a star us	T 1 /
	1	Chain reaction – Controlled chain	4	174 (D)	Lecture	Evaluation
				K1(R)	using chalk	through: short test,
		reaction –			and talk,	Class test, Multiple
		uncontrolled			Introductory	choice Questions,
		chain reaction –			session,	Quiz, Formative
		Atom bomb			Group	assessment, Shorts
					discussion	Summary or
					Mind	Overview
	-			174 / 201	mapping	
	2	Nuclear reactor –	4	K1(R)	Peer	
		Construction and			tutoring,	
		Working –			Lecture	
		breeder reactor -			using	
		types			videos,	
					Problem	
					solving,	
					Demonstrati	
					onPPT,	
					Review	
	3	Introduction to	4	K2(U)	Lecture	
		Department of			using chalk	
		atomic energy			and talk,	

V		(DAE) – International atomic energy agency (IAEA) ONDUCTOR PHYS	ICS:		Introductory session, Group discussion Mind mapping	
	1	P-N junction diode – forward and reverse biasing – characteristic of diode	4	K1(R)	Lecture using chalk and talk, Introductory session, Group discussion Mind mapping	Evaluation through: short test, Class test, Multiple choice Questions, Quiz, Formative assessment, Shorts Summary or Overview
	2	Zener diode – Characteristic of Zener diode – voltage regulator	4	K3(Ap)	Peer tutoring, Lecture using videos, Problem solving, Demonstrati onPPT, Review	
	3	USB cell phone charger – Introduction to e-vechicles and EV charging stations	4	K2(U)	Lecture using chalk and talk, Introductory session, Group discussion Mind mapping	

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development

Activities (Em/ En/SD): Model making

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Nil

Activities related to Cross Cutting Issues: Nil

Assignment: (Mention Topic and Type): Nuclear fission and fusion - Model making

Seminar Topic: (if applicable):

Sample questions (minimum one question from each unit)

Part A (1 mark)

1. The phenomenon of superposition of two coherent waves in the region of superposition is **(K1-R, CO-1)**

(a)Reflection (b) refraction (c) polarization (d) interference

- 2. No two electrons in an atom exist in the same quantum state. State True / False (K3-Ap, CO-2)
- 3. ______ is the difference between the experimentally measured mass of the isotope and its mass number. (K2-U, CO-3)
- 4. In nuclear fusion process, two or more light nuclei combine to form a single heavy nucleus. State True /False. (K3-Ap, CO-4)
- 5. The Zener diode operates in the _____ breakdown region. (K3-Ap, CO-5) Part B (3 marks)
- 6. State and prove Brewster's law. (K2- U, CO-1)
- 7. What is the principle of Zeeman effect? (K3-Ap, CO-2)
- 8. Compare nuclear nuclear fission and fusion. (K2-U, CO-3)
- 9. Give the difference between controlled and uncontrolled chain reaction. (K3-Ap, CO-4)
- 10. Write short note on Zener diode. (K3-Ap, CO-5)

Part C (7 marks)

- 11. Determine the diameter of a thin wire by air wedge. (K2-U, CO-1)
- 12. With neat sketch explain Bohr atom model. (K3-Ap, CO-2)
- 13. Give a detailed account on binding energy and binding energy curve. (K2-U, CO-3)
- 14. Explain the different parts of nuclear reactor using neat diagram. (K3-Ap, CO-4)
- 15. Elucidate the characteristics of Zener diode. (K3-Ap, CO-5)

Rairmaladouir

S. Sebartiammal

Dr. Sr. S. Sebastiammal Course Instructor

Head of the Department

Department	: Physics
Class	: III B.Sc. Physics
Title of the Course	: Major Core VIII: Relativity and Quantum Mechanics
Semester	: VI

Course Code : PC2061

Hours/Week	Credits	Total Hours	Marks	
6	5	90	100	

Learning Objectives

1. To acquire sufficient knowledge in the concept of Relativity, dual nature of matter waves,

2. To apply the Quantum mechanics principles, Operator formalisms and derive Schrodinger equation and its applications.

Course Outcome

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	gain knowledge in the concepts of special and theory of relativity	PSO - 1	K2(U)
CO - 2	evolve ideas about dual nature of matter	PSO - 2	K5(E)
CO - 3	recognize basic terms in Quantum Mechanics and different operator mechanism	PSO - 3	K6(C)
CO - 4	apply of Schrödinger's equation to micro system	PSO - 4	K3(Ap)

Unit	Module	Topics	Lectur e hours	Cognit ive level	Pedagogy	Assessment/ Evaluation
I	Relativit	y:				
	1	Frames of reference - Galilean transformation.	4	K2(U)	Lecture, discussion PPT, blended eaching	Multiple Choice Questions
	2	Michelson-Morley experiment -Postulates of special theory of relativity	3	K3(Ap)	Lecture demonstrati on PPT	Quiz through slido and nearpod,
	5	Lorentz transformation - length Contraction – time dilation - Relativity of simultaneity - addition of velocities	5	K3(Ap)	Lecture demonstrati on PPT	Formative Assessment I
	4	Variation of mass with velocity– Mass energy relation - Elementary ideas of general relativity.	3	K4(An)	PPT Lecture discussion	Assignment
II	Wave Tl					
	1	Wave Nature of Matter Phase and group velocity.	3	K1(R)	PPT Lecture discussion	Multiple Choice Questions
	2	Wave packet - expression of De Brogile's wave length.	4	K2(U)	PPT Lecture discussion	Quiz through slido and nearpod, Formative
	3	Davisson and Germer's experiment - G.P.Thomson's experiment.	5	K4(An)	PPT Lecture	Assessment I

Total contact hours: 90 (Including lectures, assignments and Tests)

	4	Heisenberg's uncertainty principle and its consequences.	3	K2(U)	Lecture PPT	
III	Funda	mentals of quantum mechanics:				
	1	Schrodinger Equation Inadequacy of classical mechanics - Basic postulates of quantum mechanics.		K1(R)	Lecture, PPT, blended classroom	Multiple Choice Questions
	2	Schrodinger equation - Properties of wave function - Probability interpretation of wavefunction.	5	K2(U)	Lecture PPT	Quiz through slido and nearpod,
	3	Linear operators - self adjoint operators .	3	K2(U)	Lecture PPT	Formative
	4	Expectation value - eigenvalues and eigenfunctions - commutativity and compatibility.		K5(E)	Lecture PPT	Assessment I & II
IV	Oper	ators:		1	<u> </u>	
	1	Angular Momentum in Quantum Mechanics Orbital angular momentum operators and their commutation relations.	ſ	K5(E)	Lecture discussion, PPT	Multiple Choice Questions Quiz through
	2	Separation of three dimensional Schrodinger equation into radial and angular parts	5	K3(Ap)	Lecture discussion, PPT	slido and nearpod,
	3	Elementary ideas of spin angular momentum of an electron - Paul matrices.		K4(An)	Lecture discussion, PPT	Formative Assessment II
V	Appli	cations of Schrodinger Equation:	1			

1	Solutions of Schrodinger Equation – Time dependent and time independent Schrodinger equation.	5	K6(C)	Lecture discussion, PPT	Multiple Choice Questions Quiz through
2	Free particle solution - Particle in a box - Potential well of finite depth (one dimension).	5	K6(C)	Lecture discussion, PPT	slido and nearpod,
3	Linear harmonic oscillator - rigid rotator and hydrogen atom.	5	K6(C)	Group discussion, PPT	Formative Assessment II

Course Focussing on Employability/ Entrepreneurship/ Skill Development : Entrepreneurship

Activities (En):Problem solving in relativity.

Course Focussing onCross Cutting Issues(Professional Ethics/ Human Values/Environment

Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues :-

Assignment : Elementary ideas of general relativity.

Seminar Topic: -

Sample questions (minimum one question from each unit)

Part A

1. The laws of Physics are same in all inertial frame of reference. (State True/False)(**K2-U**, **CO-1**)

2. Choose the correct De Broglie wavelength of a 46 gm gold ball moving with velocity 36m/m. (**K5-E, CO-2**)

a) $4x10^{-34}$ m b) $5x10^{-34}$ m c) $4x10^{-32}$ m d) $5x10^{-32}$ m

3. For a dispersive medium in the case of de Broglie waves, the condition for group and phase velocity is, (**K5-E**, **CO-2**)

a) $v_g < v_p$ b) $v_g > v_p$ c) $v_g = v_p$ d) none of these

- 4. Angular momentum is the rotational analog of linear momentum. State True / False
- 5. Atomic hydrogen constitutes about 75% of the ------ mass of the universe. a) nuclear b) hydrogen c) baryonic d) thermal

Part – B

6. State and explain the postulates of general theory of Relativity. (K2-U, CO-1)

7. Calculate the de Broglie wavelength of the charge particle of charge q and accelerated through the potential V. (**K5-E, CO-2**)

8. State and explain the general postulates of quantum mechanics. (K2-U, CO-1)

9. Write short note on Pauli matrices. (K2-U, CO-1)

10.Apply Schrodinger equation and find out the energy of a particle in a box having Infinite Square well potential. (K3-Ap, CO-4)

Part - C (5 x 8 = 40)

1. Explain in brief about the Michelson-Morley experimental setup and interpret the negative

result. (K2-U, CO-1)

2. Derive a relation connecting group and phase velocity. (K5-E, CO-2)

3. Give a detailed account on linear operators and self adjoint operators. (K2-U, CO-1)

4. Separate three dimensional Schrodinger equation into radial and angular parts. (K3-Ap, CO-4)

5. Apply Schrodinger equation and find out the energy and wave function of a Linear Harmonic Oscillator. (K3-Ap, CO-4)

C. Dirmala dour Head & Assistant Professor, G & Research Desartment of Physics, Hirpercell, Kanyasumari District, Minercell, Kanyasumari District,

Abul & Virgin Juba

Dr.M.Abila Jeba Queen & Dr. V.Virgin Jeba

Head of the Department

Dr.C.Nirmala Louis

Course Instructors

	Teaching Plan
Department	: Physics
Class	: III B.Sc. Physics
Title of the Course	: Core IX- Digital and Communication Electronics
Semester	: VI
Course Code	: PC2062

Hours/Week	Credits	Total Hours	Marks
6	5	90	100

Learning Objectives

- 1. To understand the structure of various number system and basic Logic gates.
- 2. To design and solve the Boolean Algebra simplification and Karnaugh Maps.
- 3. To construct sequential circuits and to design counters.

Course Outcomes

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO -1	Understand the basic operation, and features related to Logic gates and interprets their applications.	PSO-1	K2(U)
CO -2	Acquire knowledge on number system, arithmetic building blocks, and memories.	PSO-3	K5(E)
CO -3	Understand the fundamental concepts of logic gates, counters, registers, fiber optics, etc.	PSO-1	K2(U)
CO -4	Develop skill to build and troubleshoot combinational digital circuits.	PSO-7	K3(Ap)
CO-5	Understand AM, FM and PM modulation and demodulation techniques.	PSO-1	K2(U)
CO-6	Assess the basic concepts of fiber optics and types of fiber diodes, transistor, op-amps and converters.	PSO-2	K5(E)
CO-7	Learn the working principle of satellite communication system.	PSO-6	K6(C)

K1- Remember; K2- Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create

Teaching Plan

Modules

Unit	Module	Topics	Lecture hours	Cognitive level	Pedagogy	Assessment/ Evaluation
Ι	Digital F	undamentals				
	1	Number Systems and Conversions - Binary- Coded Decimal (BCD) Code - Gray code - 1's and 2's complements	6	K3(Ap)	Lecture discussion with PPT illustration	Evaluation through short test Multiple choice
	2	Basic logic gates - NAND, NOR and EX-OR gates - NAND and NOR as Universal Building blocks - Laws and theorems of Boolean algebra	5	K5(E)	Lecture discussion with illustration	questions Formative assessment I
	3	NAND-NAND circuits - Karnaugh's map- Sum of Product (SOP) and Product of Sum (POS) - applications	4	K3(Ap)	Lecture discussion	
II	Sequenti	al Logic	L			
	1	RS-Flip flop, Clocked RS Flip flop, D-Flip flop, J-K and J-K Master-Slave Flip- flop	6	K2(U)	Lecture discussion with PPT Illustration	Short test Quiz
	2	Shift registers and Counters - Multiplexers and Demultiplexers	4	K3(Ap)	Lecture discussion	Assignment Formative assessment I
	3	Decoders and Encoders - Memory Circuits - D/A and A/D converters - applications	5	K3(Ap)	Lecture Illustration	
III	Modulat	ion and Demodulation	•	•	•	•

Total contact hours: 90 (Including lectures, assignments and tests)

	4		· - ·		-	1
	1	Amplitude modulation - Frequency modulation, Phase Modulation and Pulse Width Modulation -	5	K2(U)	Lecture with PPT Illustration	Short test
	2	DetectorsofAmplitudeModulationFrequencyModulation (FM)	4	K2(U)	Lecture discussion	Quiz Assignment
	3	Phase modulation (PM) and Pulse width modulation (PWM), Phase locked loop (PLL) - Noise in Communication Systems.	6	K2(U)	Question- answer session Lecture	Formative assessment I
IV	Digital a	nd Satellite Communica	tion			-
	1	AmplitudeShiftKeying(ASK),FrequencyShiftKeying (FSK),PhaseShiftKeying(PSK)ModulationandDemodulation,AdvantagesAdvantagesanddisadvantagesofdigitalcommunication.	3	K2(U)	Lecture with PPT Illustration	Short test Quiz Assignment Formative assessment II
	2	Communication Satellite Systems - Telemetry - Tracking and Command System- Satellite Links	6	K2(U)	Lecture Discussion	
	3	Commonly Used frequency in Satellite Communication - Multiple access - Error Detection.	6	K2(U)	Question- answer session Lecture	
V	Fibre Op	tic Communication	1			
	1	Basic Fibre Optic System - Advantages of Fibre Optic System	6	K5(E)	Lecture with PPT	Short test Quiz Assignment

2	 Propagation of light through fibre Numerical aperture - Acceptance angle - Losses and distortion in optical fibres 	5	K5(E)	Brain storming session. Lecture	Formative assessment II
 3	Basic Fibre Optical	1	K5(E)	Illustration Lecture	
5	communication and links - Special applications	+		with PPT Illustration	

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities (Em/ En/SD): Project works based on electronics (Skill Development)

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment -

Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues: -

Assignment: (Mention Topic and Type): **Problem Solving in Digital Fundamentals on code conversion**

Seminar Topic: (if applicable): Basic Fibre Optic Communication System

Sample questions (minimum one question from each unit)

Part A (1 mark)

- 1. A number code that uses only the digits 0 and 1 to represent quantities (K3- Ap, CO-4) a) Binary Number b) Octal number c)decimal number d) Hexadecimal number 2. If J=1, K=1 in a JK flip flop and input clock frequency is 2MHz, the Q-output frequency _(K3- Ap, CO-4) will be a) 2MHz b) 1MHz c) 0.5MHz d) 4MHz 3. The abbreviation for PLL is (K2- U, CO-5) 4. The minimum number of communication satellites used for simultaneous worldwide communication is (K2- U, CO-1) a. 1 b. 2 c. 3 d. 4 5. The principle used for the transmission of light signals through the optical fiber is..... (K5- E, CO-6) a. Reflection b. Refraction
 - c. Diffraction d. Total internal reflection

Part B (4 marks)

- 1. State and Prove De Morgan's theorems. (K3- Ap, CO-4)
- 2. What is 'racing Problem' with the J-K flip flop? How it can be avoided? (K2- U, CO-3)
- 3. Explain the term Pulse width modulation. (K2- U, CO-5)
- 4. Explain the following terms (**K2- U, CO-1**) i. up-link ii. Down-link iii Cross-link
- 5. Calculate the velocity of light in the optically active region of a substance at 850nm and at 1300nm. Also compute the corresponding wavelength. Given: Refractive index of the substance at 850nm = 3.6 and at 1300nm =3.4. Velocity of light in free space= 3×10^8 m/s. (**K5- E, CO-6**)

Part C (8 marks)

- 1. Draw a NOR-NOR circuit for this Boolean expression. (K5- E, CO-2) Y= (A'+B'+C') (A'+B+C') (A+B+C')
- 2. How would you implement the RS flip flop using NAND gates? Sketch the timing diagram of the RS flip flop? (K3- Ap, CO-4)
- 3. Draw the block diagram of earth station and explain the various units in it. (**K2- U, C0-5**)
- 4. Elucidate amplitude and frequency modulation. (K2- U, CO-1)
- 5. Derive an expression for numerical aperture and acceptance angle in optical fibers. (K5-E, CO-6)

mala domi

 Dr. C. NIRMALA LOUIS, M.Sc., Ph.D., PGDCA. Head & Assistant Professor,
 PG & Research Department of Physics. Holy Cross College (Autonomous),
 Nagercoil, Kanyakumari District, Tamil Nadu, PIN: 629 004.

M. Ppsishausti

Head of the Department

Course Instructor

Dr. C. Nirmala Louis

Dr. M.Priya Dharshini & Dr. R. Krishna Priya

Department : Physics

Class : III B.Sc. Physics

Course Name : Nuclear Physics

Course Code : PC2063 Semester : VI

No of hours per week	No of credits	Total no of hours	Marks
5	5	75	100

Learning Objectives

- **1.** To enable the students to understand the properties, models and radioactive reaction of the nucleus.
- **2.** To create awareness on nuclear reactions such as fission, fusion, radiation detectors and elementary particles so that students can shine.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	gain knowledge on the fundamentals of nuclear matter (properties of nuclei and Nuclear forces)	PSO-2	R
CO- 2	apply the principles of physics in the measurements of Nuclear size, Nuclear spin, Nuclear energy levels and Nuclear magnetic moment	PSO-1	Ap
CO- 3	Study the various nuclear reactions (nuclear fission and fusion)	PSO-3	E
CO -4	explain the decay modes, Radiation Detectors and Particle Accelerators (Ionisation chamber, Proportional counter, Geiger Muller counter, Linear accelerator, Cyclotron, Synchrocyclotron, Betatron)	PSO-5	U
CO- 5	discuss the classification of elementary particles and Quark model	PSO-5	E
CO -6	analyze the characteristics and behavior of elementary particles and their fundamental interactions	PSO-7	An
CO -7	develop a deeper understanding of some important applications of nuclear physics in Nuclear Reactor and Source of stellar energy.	PSO-6	C

Modules Total contact hours: 75 (Including lectures, assignment and tests)

			Lectur	Learning	Pedagogy	Assessment/Evaluat
Uni	Sectio		e	outcomes		ion
t	n	Topics	Hours			
Ι	Proper	ties of Nuclei				
	1	Constituents of	4	Define the	PPT using	
		nuclei -		basis of	Gamma	Evaluation:
		Isotopes,		nuclei and	with AI,	Slido, Class test, oral
		Isobars,		stability of	Lecture	question
		Isotones and		nucleus	discussion	Assignment

						.
		mirror nuclei -				Ι
		Nuclear mass				
		and binding				
		energy - Unit				
		of atomic mass				
		- Binding				
		energy and				
		stability of				
		nucleus				
	2	Mass defect	4	Apply	Derivation	
		and packing		various	and group	
		fraction -		Binding	discussion	
		Binding		energy		
		fraction Vs		relations		
		mass number		Terutions		
		curve - Nuclear				
		size - Nuclear				
		spin - Nuclear				
		energy levels				
	3	Nuclear	4	solution of	Derivation,	
	5		-	Nuclear	problem	
		magnetic			-	
		moment -		magnetic	solving	
		Parity of nuclei		moment	and group	
		- Nuclear			discussion	
		quadrupole				
		moment -				
		Statistics of				
		nuclei				
	4	Nuclear forces	3	Apply	PPT using	
		- Liquid drop		Nuclear	Gamma	
		model - Semi-		forces in	with AI,	
		empherical		different	Derivation	
		mass formula -		models	and group	
		Shell model			discussion	
II		Γ	1	Radioactivity		1
	1	Radioactivity -	3	Solve	PPT using	
		Radioactive		Radioactive	Gamma with	Evaluation:
		reactions -		reactions	AI	Slido, Class test,
		Radioactive			,Derivation	oral question
		decay law -			discussion	Assignment
		Statistical nature				
		of radioactivity				I/II
	2	Activity or	4	Define and	Derivation	
		strength of a		derive	and group	
				Radioactive	discussion	
		Radioactive				
	2	Activity or strength of a radio-sample -	4	derive	and group	I/II

		doony :			colving	
		decay : Conservation			solving	
		laws		~		
	3	Radioactive	4	Statement	Derivation	
		series:		and proof	and group	
		Displacement		of	discussion	
		law - Successive		displaceme	problem	
		transformation –		nt law	solving	
		Radioactive			U	
		equilibrium				
	4	Radioact	4	Radioactive	PPT using	
	-	ive dating: Age	-	dating and	Gamma with	
		of minerals,		its	AI	
		,				
		rocks - Alpha		applications	,Derivation	
		decay - Beta			and group	
		decay - Gamma			discussion	
		decay.			problem	
					solving	
III	1	NT 1		clear Reaction		
	1	Nuclear	3	Analyse	PPT using	Evaluation:
		Reactions:		Conservation		Slido, Class test,
		Basics -		laws in	with AI	oral question
		Conservation		nuclear	Derivation	Assignment
		laws in nuclear		Reactions	discussion	
		Reactions -				II
		Energetics of				
		nuclear				
		Reactions				
	2	Cross section of	4	Define and	Derivation	
		nuclear		derive nuclea	r and group	
		Reactions -		Reactions,	discussion	
		Reaction		Reaction		
		mechanisms -		mechanisms		
		Nuclear fission -		&Nuclear		
		Energy released		fission		
		in fission of U-		11551011		
	3	235 Liquid drop	4	Define and	Derivation	
	3	Liquid drop	4			
		theory of fission		Derive	and group	
		- Nuclear chain		Nuclear chair	,	
		reaction -		reaction,	PPT using	
		Nuclear Reactor		Types of	Gamma	
		- Types of		reactor,	with AI	
		reactor - Breeder		Breeder		
		reactor - Fission		reactor &		

		bomb		Fission bomb		
	4		4		Devicestien	
	4	Fusion: Thermo	4	Define, derive	Derivation	
		nuclear reaction		and apply	and group	
		- Source of		Uncontrolled	discussion,	
		stellar energy:		fusion:	PPT using	
		Natural fusion -		Hydrogen	Gamma	
		Uncontrolled		bomb	with AI	
		fusion:				
		Hydrogen bomb.				
IV			on Dete	ctors and Partic	le Accelerator	rs
	1	Introduction -	4	Discuss	Derivation	Evaluation
		Ionisation		different types	discussion	Slido, Class test,
		chamber -		of Radiation		oral question
		Proportional		Detectors		Assignment
		counter - Geiger				II/III
		Muller counter -				
		Neutron				
		detection				
	2	Cloud chamber -	3	Define and	Derivation	
	4	Scintillation	5	derive Cloud	and group	
				chamber &		
		counter -		Scintillation	discussion,	
		Photographic			PPT using	
		detection - Solid		counter	Gamma	
		state track			with AI	
	-	detector				
	3	Semiconductor	4	Define and	Derivation	
		detector -		Derive	and group	
		Particle		different types	discussion	
		accelerators -		of Particle		
		Linear		accelerators		
		accelerator				
	4	Cyclotron -	4	Define,	PPT using	
		Synchro		derive and	Gamma	
		cyclotron -		apply	with AI	
		Betatron		Cyclotron,	,Derivation	
				Synchro	and group	
				cyclotron and	discussion	
				Betatron		
V		1	Ele	mentary Partic	les	
	1	Introduction -	4	Analyse	Discussion	Evaluation:
		Fundamental		Fundamental	PPT using	Slido, Class test,
		Interactions -		Interactions	Gamma	oral question
		Pions and			with AI	Assignment
		Muons - K				III
		mesons –				
		11030113 -				

	Hyperons,			
	Antiparticles			
2	Classification	4	Analyse	Derivation
	of elementary		classification	and group
	particles -		of elementary	discussion,
	Conservation		particles	PPT using
	laws - CPT			Gamma
	theorem			with AI
3	Resonance	3	Explain	Derivation
	particles -		symmetry	and group
	Symmetry		classification	discussion,
	classification of		of elementary	PPT using
	elementary		particles	Gamma
	particles			with AI
4	Quark model	4	Define,	Derivation
	Unification of		derive and	and group
	interactions -		apply Quark	discussion,
	The standard		model	PPT using
	model.			Gamma
				with AI

Course Focussing on Employability/ Entrepreneurship/ Skill Development : Employability

Activities (SD): Model Making

Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Environment Sustainability

Activities related to Cross Cutting Issues:-

Assignment : Seminar Topic: - Classification of elementary particles

Sample questions (minimum one question from each unit)

Part A

1. Nuclei with half integral spin obey _____

- a) MB statistics b) FD statistics c) BE statistics d) FB statistics
- 2. 1 Curie of radioactivity is given by
 - a) 3.7×10^{10} disint /min b) 3.7×10^{10} disint /hour c) 3.7×10^{10} disint /sec d) none of these
- 3. For an inelastic nuclear collision the Q value is
 - a) Q>0 b) Q<0 c) Q=0 d) infinite
- 4. In linear accelerators the drift tube lengths are progressively increasing in the ratio of
 - a) 1: 2: 3 b) 1: 3: 5 c) $\sqrt{1}$: $\sqrt{2}$: $\sqrt{3}$ d) $\sqrt{1}$: $\sqrt{5}$: $\sqrt{7}$
- 5. Neutrons comes under ----- classification of elementary particles.

a) hadrons b) hyperons c) mesons d) leptons

Part B

- 1. Define binding energy and packing fraction of nuclei. How does the binding energy per nucleon vary with mass number for light, medium and heavy nuclei? (**K3-Ap, CO-5**)
- 2. Derive an expression for Half-life and average life value of a radioactive substance.

(K5-E, CO-4)

- 3. State and prove the conservation laws in nuclear reactions (K4-An, CO-3)
- 4. Discuss the principle and construction of Cloud chamber. (K4-An, CO-3)
- 5. Explain the classification of elementary particles and its properties. (K2-U, CO-1)

Part – C

- Describe Rutherford's experiment on the scattering of α particles and state some of the important conclusions drawn from the experiment. Give briefly the theory of scattering. (K2-U, CO-1)
- 2. Explain how the phenomenon of radioactivity can be applied for the determination of the age of the earth (**K4-An, CO-3**)
- 3. Define nuclear fission. Find out the energy released in fission of U-235? Discuss the construction and working of Breeder reactor. (**K5-E**, **CO-4**)
- 4. Elucidate the principle, construction and working of Synchro Cyclotron. Hence deduce the frequency of revolution of the particles. (**K4-An, CO-3**)

5. What are quarks?. Describe the quark model of elementary particles. Also discuss the quark content of some of baryons and mesons. (K1-R, CO-2)

C. Wirmala dowi Dr. C. NIRMALA LOUIS, MSc. Ph.D. PGDCA Head & Assistant Professor, PG & Research Department of Physics. Hely Cress College (Autonomous), Nagercell, Kanyakumari District, Tamil Nadu, PIN: 625 804.

Dr.C.Nirmala Louis Head of the Department

R Birmaladouir J. But

Dr.C.Nirmala Louis & Dr. V.Shally Course Instructors

Teaching Plan

Department	: Physics
Class	: III B.Sc Physics
Title of the Course	: Elective III (b) Nano Physics
Semester	: VI
Course Code	: PP2065

Hours /Week	Credits	Total hours	Marks
5	4	75	100

Learning Objectives

- 1. To gain knowledge on synthesis and characterization of nanomaterials.
- 2. To understand the advancements and applications of nanostructures.

Course Outcome

COs	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	infer the history of nanotechnology and explain the synthesis of nanomaterials.	PSO - 1	U
CO - 2	interpret quantum well, quantum wires and quantum dots.	PSO - 5	Е
CO - 3	explain the carbon nanotubes and its applications.	PSO - 6	Е
CO - 4	discuss the applications of nanotechnology in various fields.	PSO - 4	С

Modules

Total contact hours: 90 (Including lectures, assignment and tests)

Unit	Section	Topics	Lecture Hours	Cognitiv e Level	Pedagogy	Assessment/Eval uation		
Ι	Nanomaterials							
	1	History of Nanotechnology - Background -	3	K1(R)	Lecture Discussion with PPT			

		Conceptual			Illustration	
		origins -			musuation	
		Experimental				
		advances -				
		Nanostructures				
	2	Nanomaterials -	3	K2 (U)	Lecture	Evaluation
	-	Synthesis of	5	(0)	discussion	through: Online
		oxide				quiz using Slido
		nanoparticles-				1 8
		Sol-gel				Formative
		processing -				assessment I
		Synthesis of				
		semiconductor				
		nanoparticles				
		1				
	3	Arrested	3	K2 (U)	PPT	
		precipitation -			Illustration	
		Synthesis of			(using	
		metallic			nearpod)	
		nanoparticles				
	4	Sonochemical	3	K2 (U)	Lecture	
		reduction			discussion	
		process -				
		Electrochemical				
		deposition method -				
		Biosynthesis of				
		nanoparticles				
II	Quantun	n Hetero structure				
	1	Super lattice -	3	K2 (U)	PPT and	
	1	Preparation of			group	Evaluation
		Quantum			Discussion	through: Online
		nanostructure -				quiz,
		Quantum well				Short questions
		lasers				Descriptive
	2	Quantum cascade	3	K3 (Ap)	Lecture	answers
		laser -			Discussion	Formative
		Application -			with PPT	assessment I
		Quantum wire -			Illustration	
		production of nanowires				
	3	Structure of	3	K4 (An)	PPT	
	5	nanowires - Use	5		Illustration	
		of nanowires -			musuation	
			1	1		

		Quantum dot -				
		Application of				
		Quantum dots				
	4	Quantum dot	3	K5 (E)	Lecture	
		information			Discussion	
		storage -			with PPT	
		Quantum dot			Illustration	
		infrared photo			musuation	
		detectors -				
		Quantum dot				
		lasers				
III	Carbon N	Vanotubes				
					T a star us	E
	1	Discovery of	3	K2 (U)	Lecture	Evaluation
		Nanotubes -			discussion	Evaluation
		Carbon				through: Online
		Allotropes -				quiz,
		Diamond -				Short questions
		Graphite - Carbon				Descriptive
		Nanotubes				answers
	2	Types of carbon	3	K3 (Ap)	Lecture	
		Nanotubes-		_	Discussion	Formative
		Single walled			with PPT	assessment I/II
		carbon nanotubes			Illustration	
		- Multiwalled			musuation	
		carbon nanotube -				
		Fullerite - Torus -				
		Nanobuds				
	3	Graphene sheet to	3	K4 (An)	Lecture	-
	0	a single walled	C		discussion	
		nanotube -			discussion	
		Electronic				
		structure of				
		Carbon				
		Nanotubes				
	4		3	K5 (E)	PPT and	-
	+	Synthesis of	5			
		Carbon			group	
		Nanotube -			Discussion	
		Electric Arc				
		Discharge				
		method - Laser				
		method.				
IV	Magneto	Electronics		•		
	1	Nanocrystalline 3	3	K2 (U)	Lecture	Evaluation through:
		soft material -			Discussio	Online quiz,
		Permanent			n with	Problem solving
		magnet			PPT	short questions
		material			Illustratio	Descriptive
		1			musuano	Descriptive

	2	Theoretical	3	K3 (Ap)	n Lecture	answers Formative assessment II
		background - Super paramagnetism - Coulomb blockade			discussion	
	3	Quantum cellular Automata- Spintronics	3	K4 (An)	PPT Illustratio n	
	4	Giant magneto resistance (GMR) - Types of GMR.	3	K5 (E)	Lecture Discussio n with PPT Illustratio n	
V	Applicati	on of Nanotechnolo			1	
	1	Chemistry and Environment - Energy applications of nanotechnology	3	K2 (U)	PPT Illustratio n	Evaluation through: Online quiz (Slido), Problem solving short questions Descriptive answers Formative assessment II
	2	Information and Communication - Heavy Industry – Consumer goods	3	K3 (Ap)	Lecture Discussio n with PPT Illustratio n	
	3	Nanomedicine - Medical application of Nanotechnology - Biomarkers and Bioimaging	3	K6 (C)	Lecture discussion	

4	Targeted drug	3	PPT	
	delivery -		Illustratio	
	Nanorobots.		n	

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap- Apply, An- Analyze; E-Evaluate; C- Create

Course Focussing on Employability/ Entrepreneurship/ Skill Development : Employability

Activities (Em/ En/SD): Project

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/EnvironmentSustainability/ Gender Equity): -

Activities related to Cross Cutting Issues :Nil

Assignment : (Mention Topic and Type): **Applications of nanoparticles in medicine - Google Classroom**

Seminar Topic: (if applicable): -

Part A (1 mark)

- 1. Red blood cells are _____ in diameter. (K2- U, CO-1)
- Lasers containing more than one quantum well layer are known as ______. (K5- E, CO-2)
- 3. Cylindrical fullerenes are called as _____. (K5- E, CO-3)
- 4. Spintronics is also called as _____ (K6- C, CO-4)
 - a) Microelectronics b) Magnetoelectronics c) Nanoelectronics d) None
- 5. Nanorobots could harvest power directly from the _____. (K6- C, CO-4)
 - a) Bloodstream b) Nuclear power source c) Optical systems d) vibrating membranes

Part B (3 marks)

- Describe the approaches used in nanotechnology for synthesizing nanomaterials. (K2-U, CO-1)
- 2. Summarize the applications of Quantum dot laser. (K5-E, CO-2)
- 3. Compare Electric arc discharge method with laser method for the fabrication of CNTs.

(K5-E, CO-3)

- 4. Hypothesize in detail about the permanent magnetic material. (K6-C, CO-4)
- 5. Write and explain the energy applications of nanoparticles. (K6-C, CO-4)

Part C (7 marks)

- 1. Describe sol-gel method for synthesizing nanomaterials. (K2- U, CO-1)
- 2. Summarize the growth, properties and applications of quantum cascade laser.(K5-E, CO-2)
- 3. Discriminate single walled CNTs with multiwalled CNTs. (K5-E, CO-3)
- 4. Create Giant magneto resistance and explain its types.(K6-C, CO-4)
- 5. Explain the functioning of targeted drug delivery and the factors influencing the drug Delivery. (K6-C, CO-4)

Wirmala dowi

Dr. C. NIRMALA LOUIS, M.Sc., Ph.D., PGDCA. Head & Assistant Professor. PG & Research Department of Physics. Holy Cross College (Autonomous), Nagercoil, Kanyakumari District, Tamil Nadu. PIN: 629 004.

S. Sebartiammal

Head of the Department

Dr. S. Sonia & Dr. S. Sebastianmal **Course Instructors**